Some Observations on
Equation-Based Rate Control*

Milan Vojnović and Jean-Yves Le Boudec

ICA
Institute for computer Communications and Applications

December 3, 2001

*ITC-17, Salvador da Bahia, Brazil, Dec, 2001.
Problem

Equation-based Rate Control – an approach to do rate control in the Internet

Let \bar{p} be long-run loss ratio; \hat{p}_n be an estimator of \bar{p}

Set the send rate $x(t)$ as:

$$x(T_n) = f(\hat{p}_n)$$

at some time points $\{T_n\}$;

else, $x(t) = X(T_n)$, $T_n \leq t < T_{n+1}$;

$f : [0, 1] \rightarrow \mathbb{R}^+$ is a loss-throughput function
A Typical Function f

PFTK formula ([ToN, 8(2), 2000]):

$$f(p) = \frac{1}{\tau ap^{1/2} + \rho bp^{3/2} + \rho cp^{5/2}} \text{ (pckts/sec)}$$

where τ and ρ are round-trip time and TCP retransmission timeout, respectively, and a, b, c positive-valued constants.
Problem (cont’d)

Q. Does it hold

\[E[x(t)] \leq f(\bar{p}) \]

If yes, we say the control is conservative (resp. non-conservative)

Obs. in practice, the expected round-trip time is also estimated; we do not consider this in our study.
Why is the Problem Relevant?

- Many such rate controls are proposed.

- We believe the problem that we pose is not understood for those controls.

- The question is of importance for safe deployment of such rate controls (fair coexistence with TCP – TCP-friendliness).

- There is a lack of analytical studies of such rate controls; the controls are often claimed to be TCP-friendly by over-simplistic fixed-point reasoning.
Outline

We show two major points:

1. Sufficient conditions that ensure conservative control.

2. Identify a cause of empirically observed overly conservative control as loss rate gets high.
Two Specific Assumptions

(A1) $1/\hat{p}_n$ is unbiased estimator of $1/\bar{p}$

(A2) $\{T_n\}$ are loss-event instants

Both assumptions motivated by TFRC (Floyd, Handley, Padhye, and Widmer, 2000)

Obs.[(A1)] Call θ_n the amount of data sent in $[T_n, T_{n+1})$. Let $\hat{\theta}_n$ be moving-average of $\{\theta_n\}$, i.e.

$$\hat{\theta}_n = \sum_{l=1}^{L} w_l \theta_{n-1}$$

Let $\tilde{p}_n := 1/\hat{\theta}_n$.

By observing $\bar{p} = 1/\mathbb{E}[\theta_n]$, one verifies (A1)

$$\mathbb{E}[1/\tilde{p}_n] = \mathbb{E}[\hat{\theta}_n] = 1/\bar{p}$$

\tilde{p}_n is biased estimator of \bar{p}; $\mathbb{E}[\tilde{p}_n] \geq \bar{p}$
A Preliminary Observation

Indeed

$$\mathbb{E}[x(T_n)] = \mathbb{E}[f(\hat{p}_n)]$$

Under (A1), if $f(p)$ is concave w.r.t. $1/p$, we have

$$\mathbb{E}[x(T_n)] \leq f(\bar{p}) \quad (1)$$

But, (1) does not imply $\mathbb{E}[x(t)] \leq f(\bar{p})$!

- The expectation in (1) is Palm expectation (event-average) w.r.t. rate updating events.

- (1) would imply $\mathbb{E}[x(t)] \leq f(\bar{p})$ if $\{T_n\}$ would not depend on the rate process.
Throughput

By Palm inversion formula:

$$\mathbb{E}[x(t)] = \frac{\mathbb{E}[\theta_n]}{\mathbb{E}[S_n]}$$

where $S_n := T_{n+1} - T_n$.

Equivalently,

$$\mathbb{E}[x(t)] = \mathbb{E}[X_n] + \frac{\text{Cov}[X_n, S_n]}{\mathbb{E}[S_n]}$$

where $X_n := x(T_n)$.

Thus, if $\text{Cov}[X_n, S_n] \leq 0$:

$$\mathbb{E}[x(T_n)] \leq f(\bar{p}) \Rightarrow E[x(t)] \leq f(\bar{p})$$
Our First Point
(Sufficient Conditions for a Conservative Control)

Let $\sigma(x) := \mathbb{E}[S_n | X_n = x]$.

If

(C1) $f(p)$ is concave with $1/p$

(C2) $\sigma(x)$ is non-increasing with x

then

$\mathbb{E}[x(t)] \leq f(\bar{p})$

i.e., the control is conservative.
Discussion

- **(C1)** $f(p)$ is concave with $1/p$
 True for some simple formulas (e.g. square-root); not true for PFTK when p is large

- **(C2)** $\sigma(x)$ is non-increasing with x
 May not be true for some slowly evolving congestion process
Our Second Point
(Overly Conservative Control for large \bar{p})

It was observed in several empirical studies that TFRC throughput goes to zero as \bar{p} increases.

Q. Why?
Our Second Point (cont’d)

Consider PFTK formula with Bernoulli \((p) \) loss events \(\sigma(x) = \frac{1}{px} \).

\[
\mathbb{E}[x(t)] = \mathbb{E}\left[\frac{1}{X_p} \right] \\
= \mathbb{E}\left[\frac{1}{f(\hat{p}n)} \right] \\
= \frac{1}{\tau a \mathbb{E}[\hat{\theta}_n^{-1/2}] + \rho b \mathbb{E}[\hat{\theta}_n^{-3/2}] + \rho c \mathbb{E}[\hat{\theta}_n^{-5/2}]} \\
\leq \frac{1}{\tau a p^{-1/2} + \rho b p^{-3/2} + \rho c p^{-5/2}}
\]

Obs.

1. \(\hat{\theta}_n^{-1/2} \), \(\hat{\theta}_n^{-3/2} \) and \(\hat{\theta}_n^{-5/2} \) are all convex

2. \(\hat{\theta}_n^{-3/2} \) and \(\hat{\theta}_n^{-5/2} \) are very steep for small \(\hat{\theta}_n \) (large \(\bar{p} \))

This drives the throughput down.
A Numerical Example

\[f(p) \text{ versus } 1/p \]

Obs. with the square-root formula the phenomena does not exist; with PFTK, yes.
Discussion

In general, deviation of the throughput from $f(\bar{p})$ is due to randomness of the estimator \hat{p}_n and combination of:

1. updating the rate at the loss-event instants (event/time-average)

2. non-linearity of f (convexity/concavity)
Two Non-Conservative Controls

Suppose \(\{S_n\} \) is independent of \(\{x(t)\} \) (e.g. \(\{S_n\} \) i.i.d.).

Then, \(\mathbb{E}[x(t)] = \mathbb{E}[x(T_n)] \)

For both:

1. \(\hat{p}_n \) is unbiased estimator of \(\bar{p} \);
 \(f(p) \) convex w.r.t. \(p \)

2. \(1/\hat{p}_n \) is unbiased estimator of \(1/\bar{p} \);
 \(f(p) \) convex w.r.t. \(1/p \)

\[\mathbb{E}[x(t)] \geq f(\bar{p}) \]

where equality holds only in degenerate case \(\hat{p}_n \) fixed to \(\bar{p} \).
Conclusion

We have seen:

1. Sufficient conditions under which a TFRC-like equation-based rate control is conservative.

2. A cause of overly conservative TFRC-like control for non-small \bar{p}.

Engineering implication:

Be careful with event/time-averages, and nonlinearities of the control!

Not shown in the slides, but present in the paper: