Real Time Protocol (RTP)

Prof. Jean-Yves Le Boudec
Prof. Andrzej Duda
Prof. Patrick Thiran
LCA, EPFL

CH-1015 Ecublens
Patrick.Thiran@epfl.ch
http://icawww.epfl.ch
Multimedia applications

- Streaming multimedia applications need
 - hard real-time guarantees (do not tolerate losses or (excessive) delay jitter: need Intserv, Diffserv – next chapter)
 - soft real-time guarantees (do tolerate small losses and delay jitter: need RTP)

- Soft real-time applications
 - should support multicast
 - cannot wait for lost packets/segments/datagrams to be retransmitted
 - need to associate some timing information (timestamps) with packets/segments/datagrams

- What about TCP?
- What about UDP?
Real Time Transport Protocol (RTP)

RTP
- uses UDP
- defines format of additional information required by the application (sequence number, time stamps)
- uses a special set of messages (RTCP) to exchange periodic reports
- one RTP session, one media flow

<table>
<thead>
<tr>
<th>Data link</th>
<th>Network</th>
<th>Transport</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>IP</td>
<td>UDP</td>
<td>RTP</td>
</tr>
<tr>
<td>Frame Relay</td>
<td>IP</td>
<td>UDP</td>
<td>RTP</td>
</tr>
</tbody>
</table>

From a developer’s perspective, RTP belongs to the application layer rather than the transport layer.
Mixer is an intermediate system that combines RTP streams from different sources into a single stream. It can change the data format of the RTP packets.
RTP

- Provides standard packet format for real-time application
- Specifies header fields below
- **Payload Type**: 7 bits, providing 128 possible different types of encoding; e.g., PCM, MPEG2 video, etc.
 - different media are not multiplexed
- **Sequence Number**: 16 bits; random number incremented by one for each RTP data packet sent; used to detect packet loss
RTP

- **Timestamp**: 32 bytes; gives the sampling instant of the first audio/video byte in the packet; used to remove jitter introduced by the network
 - clock frequency depends on applications
 - random initial value
 - several packets may have equal timestamps (e.g. same video frame), or even in disorder (e.g. interpolated frames in MPEG)

- **Synchronization Source identifier (SSRC)**: 32 bits; an id for the source of a stream; assigned randomly by the source

- Miscellaneous fields: Contributing Source identifier (CSRC)
Type of the payload

- Audio
 - PCM A-law
 - PCM μ-law
 - GSM
- Video
 - CelB
 - JPEG
 - H.261
 - MPEG
RTP Control Protocol (RTCP)

- Protocol specifies report packets exchanged between sources and destinations of multimedia information.
- Three reports are defined: Receiver report (RR), Sender report (SR), and Source description (SDES).
- Reports contain statistics such as the number of packets sent, number of packets lost, inter-arrival jitter.
- Used to modify sender transmission rates and for diagnostics purposes.
RTCP Bandwidth Scaling

- If each receiver sends RTCP packets to all other receivers, the traffic load resulting can be large.
- RTCP adjusts the interval between reports based on the number of participating receivers.
- Typically, limit the RTCP bandwidth to 5% of the session bandwidth, divided between the sender reports (25%) and the receivers reports (75%).
RTCP

- Functions
 - supervise the network QoS
 - flow control and congestion control
 - identification of participants
 - persistent id (CNAME = Canonical Name)
 - determine the number of participants
 - session information
 - traffic of RTCP < 5%

- Format of RTCP packets
 - SR: sender reports
 - information on the source
 - source statistics
 - RR: reception reports
 - receiver statistics
 - SDES: source description
 - CNAME
 - BYE: end of the participation
 - APP: application specific functions
SR and RR: sender and receiver reports

- Information on the source (only in SR)
 - absolute timestamp (NTP)
 - timestamp (RTP)
 - number of packets sent RTP
 - number of bytes sent RTP
- Statistics report for source SSRC-1
- Statistics report for source SSRC-2
- ...
- Statistics report for source SSRC-n
Statistics report

- SSRC-n
- Fraction of lost packets
- Number of lost packets
- Last sequence number received
- Estimation of the jitter
- Timestamp of the last SR received
- Delay since the last SR received
Jitter estimation

- S_i - RTP timestamp RTP of packet i
- R_i - reception instant of packet i
- D_i - jitter estimation for packet i
 - $D_i = (R_i - R_{i-1}) - (S_i - S_{i-1})$
- J_i - temporal average of the jitter for packet i
 - $J_i = 15/16 J_{i-1} + 1/16 |D_i|$
- Used for adaptive playout
RTSP (Real-Time Streaming Protocol)

- Similar to HTTP
 - rtsp://france-info.fr/actualites
- Description of available media
 - SDP (Session Description Protocol)
- Allows to establish RTP sessions
- Session control
 - start, pause, resume, end