A few important informations:

- The exam is worth a total of 30 marks.
- You are not allowed to enter after 14:30 and leave before 15:00.
- No electronic devices are allowed except a calculator. Make sure that your calculator is only a calculator and cannot be used for any other purpose.
- Please leave your other belongings in front of the room (or at the back).
- You are not allowed to talk to others.
- The mock midterm is not graded or corrected by the teaching team.
- Solutions will be available in December.
- There are extra pages at the end of the exam. Ask us if you need more pages.
- := means “defined as”.
- For derivations, clearly explain your derivation step by step. In the final exam you will be marked for steps as well as for the end result.
- We will denote the output data vector by \(y \) which is a vector that contains all \(y_n \), and the feature matrix by \(X \) which is a matrix containing features \(x_n^T \) as rows. Also, \(\tilde{x}_n = [1, x_n^T]^T \).
1 Kernels [5 marks in total]

Consider the following function over feature vectors $x_i, x_j \in \mathbb{R}^D$:

$$K(x_i, x_j) = (1 + a x_i^T x_j)^2, \quad a \in \mathbb{R}, \quad a > 0 \quad (1)$$

(A) [2 marks] Name two properties the function $K(x_i, x_j)$ must have for it to be a kernel.

(B) [3 marks] Show that the function $K(x_i, x_j)$ is a kernel.

Hint: The proof might be easier if you expand $(1 + a x_i^T x_j)^2$ and use the fact that the functions $x_i^T x_j$ and $(x_i^T x_j)^2$ are kernels and follow the two properties.
2 Multiple-output regression [5 marks in total]

Suppose we have \(N \) regression training-pairs, but instead of one output for each input vector \(x_n \in \mathbb{R}^D \), we now have multiple outputs \(y_n = [y_{n1}, y_{n2}, \ldots, y_{nK}]^T \in \mathbb{R}^K \). For each output \(y_{nk} \), we wish to fit a separate linear model:

\[
y_{nk} \approx f_k(x_n) = \beta_{k1}x_{n1} + \beta_{k2}x_{n2} + \ldots + \beta_{kD}x_{nD} = \beta_k^T x_n
\]

(2)

where \(\beta_k \) is the vector of \(\beta_{kd} \) for \(d = 1, 2, \ldots, D \). Note that there is no bias term.

Our goal is to estimate \(\beta = [\beta_1^T, \ldots, \beta_K^T]^T \) for which we choose to minimize the following cost function:

\[
L(\beta) := \sum_{k=1}^{K} \sum_{n=1}^{N} \frac{1}{2\sigma_k^2} (y_{nk} - \beta_k^T x_n)^2 + \frac{1}{2\sigma_0^2} \sum_{k=1}^{K} \sum_{d=1}^{D} \beta_{kd}^2
\]

(3)

where \(\sigma_k > 0 \) are known real-valued scalars for \(k = 0, 1, \ldots, K \). We denote the set of all \(\sigma_k \) by \(\sigma \).

(A) \[1 \text{ mark}\] Derive the normal equation for \(\beta_k^* \) that minimizes \(L \).

(B) \[2 \text{ marks}\] Discuss the conditions under which the minimum \(\beta_k^* \) is unique. Assuming the conditions hold, write the expression for the unique solution.

(C) \[2 \text{ marks}\] Let \(\beta^* \) be the vector of all \(\beta_k^* \). Derive a probabilistic model under which the solution \(\beta^* \) is the maximum-a-posteriori (MAP) estimate. You must give expressions for the likelihood \(p(y|X, \beta, \sigma) \) and the prior \(p(\beta|\sigma) \).
3 Mixture of Linear Regression [10 marks in total]

In Project-I, you worked on a regression dataset with two or more distinct clusters. For such datasets, a mixture of linear regression models is preferred over just one linear regression model.

Consider a regression dataset with \(N \) pairs \(\{y_n, x_n\} \). Similar to Gaussian mixture-model (GMM), let \(r_n \in \{1, 2, \ldots, K\} \) index the mixture component. Distribution of the output \(y_n \) under the \(k \)'th linear model is defined as follows:

\[
p(y_n|x_n, r_n = k, \beta) := \mathcal{N}(y_n|\beta_k^T \tilde{x}_n, 1) \tag{4}\]

Here, \(\beta_k \) is the regression parameter vector for the \(k \)'th model with \(\beta \) being a vector containing all \(\beta_k \). Also, \(\tilde{x}_n = [1, x_n^T]^T \).

(A) [2 marks] Define \(r_n \) to be a binary vector of length \(K \) such that all the entries are 0 except a \(k \)'th entry i.e. \(r_{nk} = 1 \), implying that \(x_n \) is assigned to the \(k \)'th mixture. Rewrite the likelihood \(p(y_n|x_n, \beta, r_n) \) in terms of \(r_{nk} \).

(B) [1 mark] Write the expression for the joint distribution \(p(y|X, \beta, r) \) where \(r \) is the set of all \(r_1, r_2, \ldots, r_N \).

(C) [3 marks] Assume that \(r_n \) follows a multinomial distribution \(p(r_n = k|\pi) = \pi_k \), with \(\pi = [\pi_1, \pi_2, \ldots, \pi_K] \). Derive the marginal distribution \(p(y_n|x_n, \beta, \pi) \) obtained after marginalizing \(r_n \) out.

(D) [2 marks] Write the expression for the maximum likelihood estimator \(\mathcal{L}(\beta, \pi) := -\log p(y|X, \beta, \pi) \) in terms of data \(y \) and \(X \), and parameters \(\beta \) and \(\pi \).

(E) [2 marks] Is \(\mathcal{L} \) jointly-convex with respect to \(\beta \) and \(\pi \)? Is the model identifiable? Prove your answers.
4 Multi-class classification [5 marks in total]

Suppose we have a classification dataset with \(N \) pairs \(\{y_n, x_n\} \) but now \(y_n \) is a categorical variable, i.e. \(y_n \in \{1, 2, \ldots, K\} \) where \(K \) is the number of classes. We wish to fit a linear model and in the similar spirit to logistic regression, we will use a multinomial logit distribution to map linear inputs to a categorical output.

We will define \(\eta_{nk} = \tilde{x}_n^T \beta_k \) for all \(k = 1, 2, \ldots, K - 1 \) and then compute the probability of output,

\[
p(y_n = k|x_n, \beta) = \frac{e^{\eta_{nk}}}{\sum_{j=1}^{K} e^{\eta_{nj}}} \quad (5)
\]

For identifiability reasons, we set \(\eta_{nK} = 0 \), therefore \(\beta_K = 0 \) and we need to estimate \(\beta_1, \beta_2, \ldots, \beta_{K-1} \).

Similar to logistic regression, we will assume that each \(y_n \) is i.i.d. i.e.

\[
p(y|X, \beta) = \prod_{n=1}^{N} p(y_n|x_n, \beta) \quad (6)
\]

Following the derivation of logistic regression,

(A) [2 marks] Derive the log-likelihood for this model.

(B) [2 marks] Derive the gradient with respect to \(\beta_k \).

(C) [1 marks] Show that the negative of the log-likelihood is convex.
5 Proportional Hazard Model [5 marks in total]

We have a regression dataset with N pairs $\{y_n, x_n\}$ where the output is an ordered output i.e. $y_n \in \{1, 2, 3, 4, \ldots, K\}$ (as opposed to an un-ordered output in the standard multi-class classification). We wish to fit a linear model.

In the proportional hazard model, we use the following probability distribution,

$$p(y_n = k|x_n, \beta, \theta) = \frac{\exp(\eta_{nk})}{\sum_{j=1}^{K} \exp(\eta_{nj})}, \text{ where } \eta_{nk} = \theta_k + \beta^T x_n, \forall k \quad (7)$$

Here, $\theta_k \in \mathbb{R}$ and are ordered, i.e. $\theta_1 > \theta_2 > \ldots > \theta_K$. We will denote the vector of all θ_k by θ. Similar to a standard regression model, we assume that all pairs $\{y_n, x_n\}$ are i.i.d.

Answer the following questions. Clearly show all steps of your derivations.

(A) [2 marks] Is $p(y_n|x_n, \beta, \theta)$ a valid distribution? Prove your answer.

Hint: You need to prove two properties to be able to show this.

(B) [2 marks] Derive the log-likelihood for this model.

(C) [1 mark] Show that the negative of the log-likelihood is convex w.r.t. all θ_k and β.
Notes