Adaptive Data Structures for Networking Systems

Adaptive Methods

- **Challenge:** Networking systems are hard to program
 - Optimal solutions
 - hard to pre-determine (NP-complete, etc.)
 - often depend on the traffic patterns and thus change over time
- **Solution** – automated run-time adaptation to changes in
 - Input patterns
 - Execution environment
- **Adaptive methods**
 - Monitor the execution of processing tasks in a network element
 - Dynamically self-reconfigure (adapt) at run-time
- **What to reconfigure on the data plane?**
 - Resources re-assignment
 - Run-time code restructuring
 - Data structures adaptation

Adaptive Data Structures

- **Search methods**
 - Typically a tree-based data structure
 - Typically not optimized for the expected search keys
 - Key bottleneck: # of memory accesses = tree depth
- **Adapting to changes in input traffic patterns**
 - utilize locality in the search keys
- **If we knew the hit statistics, what could we do better?**
 - Modify or augment the tree according to the hits distribution
- **Challenges:**
 - Data structure monitoring
 - Data structure adaptation

Data Structure Monitoring

- Efficient statistics gathering:
 - gather maximum statistics with minimal overhead (low number of counters)

Adaptation - Network of Shortcuts (NoS)

- Introduce shortcuts into the search tree to reach frequently accessed nodes more rapidly
- Build a Network of Shortcuts (NoS) based on precomputed gain

Solutions

Example search (decision) tree:

certain paths travelled more often than others

Researchers:
Lukas Kencl, Andrea Bergamini

Collaborators:
Nils Kammenhueber, TU Munich

Research at Intel