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ABSTRACT
The proliferation of online social networks, and the concomitant
accumulation of user data, give rise to hotly debated issuesof pri-
vacy, security, and control. One specific challenge is the sharing
or public release ofanonymized datawithout accidentally leaking
personally identifiable information (PII). Unfortunately, it is often
difficult to ascertain that sophisticated statistical techniques, po-
tentially employing additional external data sources, areunable to
break anonymity.

In this paper, we consider an instance of this problem, where
the object of interest is the structure of a social network, i.e., a
graph describing users and their links. Recent work demonstrates
that anonymizing node identities may not be sufficient to keep the
network private: the availability of node and link data froman-
other domain, which is correlated with the anonymized network,
has been used to re-identify the anonymized nodes. This paper is
about conditions under which such a de-anonymization process is
possible.

We attempt to shed light on the following question: can we as-
sume that a sufficiently sparse network is inherently anonymous,
in the sense that even with unlimited computational power, de-
anonymization is impossible? Our approach is to introduce aran-
dom graph model for a version of the de-anonymization problem,
which is parameterized by the expected node degree and a similar-
ity parameter that controls the correlation between two graphs over
the same vertex set. We find simple conditions on these parameters
delineating the boundary of privacy, and show that the mean node
degree need only grow slightly faster thanlog n with network size
n for nodes to be identifiable. Our results have policy implications
for sharing of anonymized network information.

Categories and Subject Descriptors
H.1 [Models and Principles]: General; G.3 [Mathematics of Com-
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1. INTRODUCTION
The emergence of online social networks such as Facebook, Twit-

ter, MySpace, Linkedin, etc. with hundreds of millions of users im-
plies that an unprecedented amount of user data is now in the hands
of the providers of such services. Not surprisingly, the fair use of
this information, the appropriate notions of privacy and security,
and the technical and legal tools to control its sharing and dissem-
ination, have become controversial and hotly debated problems in
the scientific community and beyond.

There are many reasons why social network data might be shared
between organizations, or even released into the public domain.
First, this information is very valuable for scientific purposes: the
modest number of publicly available datasets has led to a broad va-
riety of research projects and results. For example (and without
any claim to exhaustiveness), promising research directions in this
area include probabilistic modeling of network propertiesand dy-
namics [19], real data measurement and analysis [25, 24, 16,6],
and developing scalable algorithms to navigate and infer data from
large-scale networks [18, 20]. Obviously, this requires great care in
order to avoid the accidental release of sensitive information about
individual users. As AOL’s public relations disaster a few years
ago [1] illustrates, simply anonymizing user identities may not be
sufficient to prevent an attacker from identifying individual users
through other means. Second, online social networks are increas-
ingly integrated with other services on the web, which requires a
certain amount of sharing between organizations (e.g., facebook
third-party applications and the facebook connect function on third-
party websites). Third, it has been recognized that social network
information has strong potential for marketing purposes (e.g., for
churn prediction [32] or for targeted advertisement [12]).In all of
these areas lurks the risk of accidental or deliberate violations of
user privacy. Several works address the privacy issue in social net-
works [8, 17], and propose mechanisms to preserve users’ privacy
[39, 9], or suggest the vulnerability of online social networks to
different attacks [15].

In order to protect users’ privacy, an established method isre-
placing their identities with random unique IDs, a process known
asanonymization. However, recent works have shown methods that
are able to infer the true user identities under certain conditions, by
relying on side information [28, 3, 38]. We present a more detailed



summary of the related work in this field in Section 2. Most of
the works in this area focus on proposingalgorithmsandmethods
for de-anonymizing networks, tested on various real datasets of on-
line networks [23, 27]. Papers in this category propose algorithms
for either attackingspecificusers in publicly available network data
and revealing their identity [3], or de-anonymizing a fraction of all
users in a network [38]. A major challenge in all these scenar-
ios is scalability. Recently, algorithms that are applicable for de-
anonymizing large networks have also been introduced [28, 27].

What is still lacking in the literature is a thorough understanding
of the conditions under which de-anonymization is feasible. We
would like to be able to ascertain when a network’s anonymitycan
be guaranteed, given the side information and computational re-
sources available to an attacker. In this paper, we attempt to make
a step in this direction. We study a challenging version (from the
perspective of an attacker) of the de-anonymization problem, where
the attacker has no side information about nodes in the network to
be attacked other than network structure, specifically a correlated
version of the edge set of that network obtained from other sources.

Contribution. To the best of our knowledge, ours is the first pa-
per to pursue a theoretical treatment of network de-anonymization
problem, and in particular, considering its feasibility for large net-
works. Our contributions are three-fold: We explore fundamen-
tal limits for de-anonymization regardless of the specific algorithm
employed, and investigate the relationship between network param-
eters and the possibility of guaranteeing anonymity in suchnet-
works. Moreover, we introduce a mathematically tractable model
that captures the notion of correlated networks, and uses the idea
of graph sampling to control the structural similarity of two graphs.
This model is based on random graphs, and can be viewed as a gen-
eralization of the classical automorphism group problem for ran-
dom graphs [5, chapter 9]. Finally, we prove that a surprisingly
simple and mild condition on the scaling of the expected degree
with the number of nodes is sufficient for de-anonymization to be
feasible, with strong implications on privacy.

The following important observation is behind our modelingap-
proach: In most real cases, although nodes are anonymized inthe
released data of social networks, the structure of the graphis pre-
served, i.e., this is equivalent to having access to an unlabeled
graph. We assume that an attacker has access to an auxiliary la-
beled network, in which user identities are known. Such a network
could be obtained for example from public data, or inferred from
other sources. This type of attack is also considered in [28].

To give a concrete example, we ask whether it would be safe
for an academic institution to release a database of anonymized
email or call logs, if an attacker has available to him a correlated
but highly incomplete set of likely social links between thestaff
and students of that institution (e.g., by mining the publicweb site
of groups, departments, and so on)? Could an attacker use this
incomplete side information to reverse-engineer the anonymized
identities in the database, and therefore the communication pattern
of this university? More generally, most of us have many differ-
ent online identities that are in different hands, and the social links
in these different domains are likely not completely identical, but
correlated.

It is clear that the availability of additional side information (e.g.,
class labels for users such as from demographic information, or
richer link information such as directed interactions, time stamps)
can only further benefit the attacker. Here, we assume that the at-
tacker only has the graph structure for re-identification ofnodes.

In this paper we explore the problem of approximate graph match-
ing introduced above. We use the notion ofgraph samplingto de-
velop a model ofsimilar or correlatedgraphs. Graph sampling has

been used in other contexts, e.g., as a way to estimate node and
edge features from the network [35, 11], or to generate different
snapshots of an observed network as samples from a hidden under-
lying graph [31]. The structural similarity we seek is achieved by
sampling the two graphs from an underlyinggeneratorgraph. Our
key result is that under surprisingly mild conditions on themodel
parameters, depending on the extent of the overlap between the
two graphs, it is possible to establish a perfect mapping between
the nodes of the two graphs as the number of nodes grows large.

Our results for approximate graph matching not only exhibitthe
risk of a privacy breach in the release of even the most basic infor-
mation about real networks (i.e., only anonymized users andtheir
links), but can have useful applications as well. If matching is feasi-
ble, one can combine several “noisy” public (anonymized) versions
of social networks obtained from different sources into a more pre-
cise, combined network. In another scenario, suppose we have the
call graph between all the phone numbers in an organization,and
the graph of email exchanges between email addresses in thissame
organization. One could then establish the correspondencebetween
phone numbers and email addresses solely through the structure of
the two social networks (which we expect to be similar but notex-
actly equal).

We should emphasize that this paper only addresses thefeasibil-
ity of de-anonymization. This amounts to establishing that there
exists a cost function over the two graphs, such that minimizing
this function finds the correct matching with high probability. We
do not address the computational complexity of this process. The
recent work of Schmatikov and Narayanan [28] report successin
de-anonymizing fairly large networks. However, their workfocuses
on heuristics for matching, which they evaluate over samples of real
social networks, while our focus is to understand the boundaries of
anonymity in terms of fundamental network properties.

The remainder of this paper is organized as follows. Section2
briefly discusses related work. In Section 3, we formally define the
de-anonymization problem, and introduce a mathematical model
for approximate graph matching of large networks. Section 4is
the core of this paper where we prove that in our model, perfect
matching is feasible under mild conditions on the expected degree
of the graphs and on their similarity. Section 5 discusses numerical
experiments using social network data to justify the assumptions in
our model. Finally, Section 6 concludes the paper with a discussion
of the implications of the result.

2. RELATED WORK
We briefly summarize related work in network de-anonymization

and approximate graph matching. This can be categorized as fol-
lows: 1) papers relevant to network modeling with direct appli-
cation for de-anonymizing users in social networks, 2) papers in
the area of graph isomorphism and approximate graph matching,
mostly from applications in machine learning and pattern recogni-
tion problems.

In the first category, in their recent work [28], Narayanan and
Shmatikov propose a novel algorithm for de-anonymizing social
networks, based purely on network topology. Their algorithm uses
the structural similarity of a target and an auxiliary network. Al-
though the goal and problem definition of our contribution issim-
ilar to theirs, we seek insights into the fundamental conditions for
de-anonymization to be feasible, while they demonstrate the effec-
tiveness of de-anonymization of a real social network usingheuris-
tics.

Backstrom et al. introduce active and passive attacks for de-
anonymization of social networks [3]. They show how a target
users can be identified in a very large network by identifyinga



neighborhood subgraph around the user using only network struc-
ture. They investigate the effectiveness of these attacks both the-
oretically and empirically. A limitation of active attacksis the ne-
cessity of creating fake (dummy) nodes in the social networkbefore
its release (which is of course a strong limitation in practice), while
passive attacks are capable of re-identifying only a limited number
of users, but without the need for fake nodes. Thus, the method
works best for de-anonymization ofspecificusers within the net-
work, or a small fraction of all users. A similar attack modelis
analyzed in [10], where an attacker is allowed to issue queries that
reveal ak-hop subgraph around a target node; they analyze the pri-
vacy risk to the identity of the target node and to the presence of
specific links, both using random graph models and real data.

Finally, a novel de-anonymization attack is introduced by Won-
dracek et al. [38] that exploits group membership information avail-
able on social networking sites. They show that informationabout
the group memberships of a user is often sufficient to uniquely
identify this user, or at least to significantly reduce the set of possi-
ble candidates, and assess the feasibility of the attack both theoret-
ically and empirically.

In the second category, several works propose different tech-
niques for exact and approximate graph matching, mostly in image
processing and pattern recognition. In [30], Cordella et al. propose
a so called VF algorithm as a solution forexactsubgraph matching,
or subgraph isomorphism, exhibiting less complexity compared to
the famous Ullmann backtracking algorithm [37]. In [36], Tian and
Patel suggest an approximate graph matching tool (TALE) through
a novel indexing method that incorporates graph structuralinforma-
tion in a hybrid index structure. Although the structural information
for matching graphs is used, the approximate matching problem in
such cases is generally defined as node mismatches or inconsisten-
cies in node attributes, rather than structural difference(in edges)
as in our case.

Other works in this area propose different methods such as ran-
dom walks on graphs [7], using EM algorithm and singular value
decomposition [22], and the edit-distance criterion for approximate
matching different types of graphs [34, 26]. Because of the com-
plexity of matrix manipulation and computation of probability dis-
tributions, such methods are not feasible for application to very
large networks.

Our contribution to this existing body of work is to introduce a
mathematically tractable, parsimonious model for the problem of
matching two similar graphs, and to derive asymptotic bounds in
terms of fundamental parameters for network anonymity, indepen-
dently of specific algorithms.

3. PROBLEM DEFINITION AND MODEL
We define the problem of matching the vertex sets of two graphs,

and introduce theG(n, p; s) random graph model, which generates
two similar graphsG1,2 over the same vertex set. As mentioned
before, the goal is to match the vertices of two unlabeled graphs
whose edge sets are correlated but not necessarily equal. The mo-
tivation for our model is its parsimony and symmetric structure,
ingredients for its mathematical tractability.

The model assumes that the observed networksG1,2 are incom-
plete manifestations of a true underlying networkG of relation-
ships. For example, the edges ofG might represent the true rela-
tionships between a set of people, whileG1,2 capture the observ-
able interactions between these people, such as communications
(email, phone calls, proximity, and so on), or “friend”-relationships
in a social network.G1,2 might alternatively represent observations
of the same network at different points in time.

To elaborate on this, letG = (V, E) be a generator graph with

vertex setV and edge setE. We assume here thatG is an Erdös-
Rényi random graphG(n, p) with n nodes, where every edge exists
with identical probabilityp, independently of all the other edges.
For a fixed realization ofG = G(n, p), we generate two graphs
G1,2 = (V, E1,2) by sampling the vertex setE twice. More pre-
cisely, each edgee ∈ E is in the edge set ofE1,2 with proba-
bility s, independently of everything else. As a result, the sample
graphsG1,2 are themselves Erdös-Rényi random graphG(n, ps),
but their edge sets are correlated, in that the existence of an edge
in E1 implies that the existence of this edge inE2 is more likely
than unconditionally (providedp < 1 ands > 0) (see Fig. 1). The
G(n, p) model has been widely used in the study of complex and
social networks [4, 14, 29, 2], which makes it a plausible candidate
for the study of the approximate matching problem.

Our goal is to determine whether it is possible to find the cor-
rect mapping between the nodes ofG1 andG2, assuming we only
see unlabeled versions of these two graphs (and without access to
the generatorG). This is equivalent to the assumption that the two
graphs have different vertex label sets that contain no information
about the graphs, such as random labels allocated in an anonymiza-
tion procedure. Using this model, our problem can be viewed as
the generalization of the classical automorphism group problem in
random graphs. We discuss this and also the effect of the choice of
other graph models at the end of Section 4 and also in Section 6.

We formally define the graph matching problem as follows. We
assume thatG1,2 are only available in unlabeled form (or equiva-
lently, with two arbitrary and unknown sets of labels). Letπ denote
a permutation onV , i.e., one way of mapping vertices fromG1 onto
G2. The number of such permutations isn!. The identity permu-
tation, denoted byπ0, is the correct mapping between the nodes of
G1 andG2. We seek an error function over the set of permutations,
which succeeds if it is uniquely minimized byπ0.

Therefore, to solve the matching problem, we are interestedto
show the following:

Among all possible permutations between the two vertex sets, the
identity permutationπ0 is the permutation that minimizes an error
function, giving the node matching between the two graphs.

The error function should measure to what extent the structures
of graphsG1 andG2 resemble each other under a given permuta-
tion. The structural difference can be viewed as the difference be-
tween the corresponding edge sets. This idea has also been investi-
gated in the field of pattern recognition where theedge-consistency
of two graph patterns (in matching a data graph to a model graph)
is used to obtain the correspondence errors [26, 22].

We introduce the error measure for edge-inconsistency, consid-
ering only the structures of two graphsG1(V, E1) andG2(V, E2).
The matching error∆ can be generally defined as

∆π =
X

e∈E1

1{π(e)/∈E2} +
X

e∈E2

1{π−1(e)/∈E1}
, (1)

where1{A} denotes the indicator function. In other words, permu-
tationπ defines a mapping between the nodes ofG1 andG2, and
∆ counts the number of edges that exist in one graph with the cor-
responding edges not existing in the other graph under matching π.
This is the simplest error function that can be assumed for such a
setting when comparing the structures of two graphs. While this
cost function is not necessarily optimal (depending on the graph
model) nor computationally efficient, it lends itself to probablistic
analysis. Specifically, we prove below that if the sampling prob-
ability s is beyond some threshold, asn grows large, the identity
permutationπ0 minimizes the error function (1).



Figure 1: Sampling process applied to the underlying graphG,
resulting in the two sampled graphsG1 and G2 to be matched.

We reiterate that we do not address the algorithmic aspects of
de-anonymization, including the computational complexity of enu-
merating all mappings and computing their error. Instead, we next
show conditions on the model parameters such that minimizing the
error function is almost surely equivalent to identifying the correct
mapping using only the structures of the two sampled graphs,i.e.,
we show thatde-anonymization is feasible, and it is not possible to
guarantee anonymity.

4. CONDITIONS FOR PERFECT MATCH-
ING

Following the model introduced in Section 3, we state the main
theorem of this paper, followed by its proof.

THEOREM 4.1. For theG(n, p; s) matching problem withs =
ω(1/n) andp → 0, if

ps
s2

2 − s
= 8

log n

n
+ ω(n−1), (2)

then the identity permutationπ0 minimizes the error criterion(1)
a.a.s1, yielding perfect matching of the vertex sets ofG1 andG2. 2

PROOF. We denote by∆0 the error induced by the identity per-
mutation and∆π the error induced by the permutationπ. Figure 2
depicts two possible mappings between the sameG1 andG2 shown
in Figure 1 corresponding to the identity mappingπ0 and a permu-
tation π2 (in which all nodes are fixed except two) respectively,
together with their error.

To show the result, we defineΠk on V as the set of all permu-
tations that fixn − k nodes and permutek nodes, calling them an
order-k permutation. The number of such permutations, referred to
as “rencontre numbers”, is as follows [33]:

|Πk| = R(n, n − k) =

 

n

k

!

· (!k), (3)

where!k is the subfactorial ofk, denoting the number of permuta-
tions ofk objects in which no object appears in its natural place. It
is easily verified thatR(n, n−k) can be upper-bounded as follows:

1a.a.s: asymptotically almost surely, i.e., with probability going to
1 as the number of nodesn goes to infinity. In general,asymptotic
refers to the behavior forn → ∞.
2We use the standard asymptotic notation (o, O, ω, Ω, andθ).

|Πk| =

 

n

k

!

· (!k) ≤

 

n

k

!

·

„
k!

2

«

≤ nk. (4)

The random variables introduced below are indexed byn, which
we omit unless required by the context. We define

Sk =
X

π∈Πk

1{∆π≤∆0}.

Sk counts the number of order-k permutations for which the num-
ber of matching errors is at most that of the identity permutation.
Thus,S =

Pn
k=2 Sk is the total number of false matches. The

expected number of errors can be computed as:

E [S] =
nX

k=2

E [Sk] =
nX

k=2

X

π∈Πk

E
ˆ
1{∆π≤∆0}

˜

=
nX

k=2

X

π∈Πk

P {∆π − ∆0 ≤ 0} ,

where the expectation is overG(n, p; s).

Figure 2: The identity permutation π0 versus a permutation
π2 ∈ Π2 that mismatchesk = 2 vertices for mapping G1 to
G2. The error in each case corresponds to the number of edges
in one graph with the mapped edge not existing in the other
graph. Thus,∆0 = 8 and ∆π2

= 10, where∆0 is the edge dif-
ference as a result of the sampling process, and∆π2

is induced
by both the sampling process and the wrong mapping of two
nodes inπ2.

S counts the total number of non-identity permutations that min-
imize the error, and we need to show that with high probability no
such permutations exist. By the First Moment Method (following
Markov’s inequality), sinceS is a non-negative integer-valued ran-
dom variable, to show thatP {S = 0} → 1, it suffices to show that
E[S] → 0.

Using this method and substituting (4) in the above, it is then
sufficient to show that

E [S] ≤
nX

k=2

nk max
π∈Πk

P {∆π − ∆0 ≤ 0} → 0. (5)



We bound the error probability for a fixed order-k permutation
π, i.e., we bound the probability term in (5). For permutationπ,
let Vπ be the set of vertices for whichv 6= π(v), and letEπ =
Vπ × V , i.e., the set of possible edges between one or two vertices
mismatched underπ. Note that every edge satisfyinge 6= π(e) is
in Eπ. The inverse is not true, because transpositions inπ (a pair
(u, v) such thatπ(u) = v andπ(v) = u) induce invariant edges.
The cardinalityek of Eπ is

ek = |Eπ| =

„
k
2

«

+ k(n − k),

where the first term is the number of unordered node pairs bothin
Vπ, and the second term is the number of unordered node pairs with
one node inVπ.

As every edgee in the complement ofEπ (i.e., in(V ×V )−Eπ)
is by definition invariant underπ, they contribute equally to∆0 and
∆π. Therefore, we can write∆π − ∆0 = Xπ − Yπ, where

Xπ =
X

e∈Eπ

|1{e∈E1
π}

− 1{π(e)∈E2
π}

|,

Yπ =
X

e∈Eπ

|1{e∈E1
π}

− 1{e∈E2
π}

|, (6)

with E1,2
π = Eπ ∩ E(G1,2), i.e., the set of edges inG1,2 incident

to at least one mismatched vertex. Here,Yπ is the number of errors
for the identity permutation within the setEπ, i.e., the number of
sampling errors withinEπ. Note thatXπ andYπ are not indepen-
dent, because they are functions of the same random setsE1,2

π .
Yπ counts the number of edges inEπ that are sampled in only

one ofG1,2, i.e., the number of sampling errors under the identity
permutation. The probability for each possible edge to be inE(G)
and exactly one ofG1,2 is 2ps(1 − s). ThusYπ is binomial with
probability2ps(1 − s).

ForXπ , we need to proceed more carefully. Assumeπ hasφ ≥
0 transpositions. First, note that each transposition inπ induces one
invariant edgee = π(e) = π−1(e) in Eπ (such an edge contributes
to Xπ with probability2ps(1 − s)).

The remainingek − φ edges are not invariant underπ. Each
pair of such edges(e, π(e)) contributes1 to Xπ if e ∈ G1 and
π(e) 6∈ G2 or vice versa (cf. (6)). The probability for exactly
one of twodifferent edges inEπ to be sampled is2ps(1 − ps).
Note that the terms in (6) are dependent, because conditional on
|1{e∈E1

π}
− 1{π(e)∈E2

π}
| = 1, at least one ofe or π(e) is present

in the generatorG. Thus, the conditional probability of an adjacent
pair (either(π−1(e), e) or (π(e), π(π(e))) contributing1 to (6) is
s(1 − ps). We conservatively ignore this positive correlation and
stochastically lower-boundXπ by assuming that each pair of edges
(e, π(e)) contributes an i.i.d. Bernoulli with parameter2ps(1−ps)
to (6).

Thus,Xπ is stochastically lower-bounded by the sum of two in-
dependent binomialsBi (ek − φ, 2ps(1 − ps))+Bi (φ, 2ps(1 − s)),
whereφ is the number of transpositions inπ. By definition, a trans-
position can occur only between two vertices that are both inVπ.
Hence,φ ≤ bk/2c ≤ k/2.

Thus, we have

Xπ

(stoch.)

≥ Bi (ek − bk/2c, 2ps(1 − ps)) (7)

Yπ ∼ Bi (ek, 2ps(1 − s)) . (8)

We upper-bound the probability of the event{Xπ − Yπ ≤ 0}
using the following lemma, which holds regardless of dependence
betweenXπ andYπ:

LEMMA 4.1. Let X1 and X2 be two binomial random vari-
ables with meansλ1 andλ2, whereλ2 > λ1. Then,

P {X2 − X1 ≤ 0} ≤ 2 exp

„

−
1

8

(λ2 − λ1)
2

λ2 + λ1

«

. (9)

PROOF OFLEMMA . Let X1 andX2 be two binomial random
variables with meansλ1 and λ2. The probability of the event
{X2 − X1 ≤ 0} can be upper-bounded as follows:

P {X2 − X1 ≤ 0} ≤ P {X1 ≥ x} + P {X2 ≤ x} , (10)

for anyx.
We now find an upper-bound for the right-hand side of (10). We

use the Chernoff bounds for the binomial random variablesX1 and
X2 using the following theorem [13]:

If X ∈ Bi (n, p) andλ = np, then,

P {X > λ + t} ≤ exp

„

−
t2

2 (λ + t/3)

«

, t ≥ 0; (11)

P {X < λ − t} ≤ exp

„

−
t2

2λ

«

, t ≥ 0. (12)

We upper-boundP {X1 ≥ x} andP {X2 ≤ x} using (11) and
(12) (for two arbitrary positive values oft1 and t2 respectively).
We setx = (λ1 +λ2)/2 , and thust1 = t2 = (λ2 −λ1)/2. Using
λ2 > λ1 allows to bound the two exponents as follows:

P {X1 ≥ x} ≤ exp

„

−
1

8

(λ2 − λ1)
2

λ1 + (λ2 − λ1)/6

«

≤ exp

„

−
1

8

(λ2 − λ1)
2

λ1 + λ2

«

, (13)

and

P {X2 ≤ x} ≤ exp

„

−
1

8

(λ2 − λ1)
2

λ2

«

≤ exp

„

−
1

8

(λ2 − λ1)
2

λ1 + λ2

«

. (14)

This completes the proof.

Now letλπ andλ0 denote the means ofXπ andYπ respectively,
with values,

λπ = 2ps(1 − ps)(ek − k/2) (15)

λ0 = 2psek(1 − s). (16)

Since0 ≤ s ≤ 1, 2 ≤ k ≤ n, andek ' k(n − k/2), to satisfy
λπ > λ0 we need to have,

2ps(1 − ps)(k(n − k/2) − k/2) > 2psk(n − k/2)(1 − s)

=⇒ s >
“

1−ps
1−p

” 1

2n − k
, (17)

which will be satisfied fors = ω(1/n) andp → 0.
Thus, using the above lemma, we obtain,

P {Xπ − Yπ ≤ 0} ≤ 2 exp

0

B
B
B
@
−

1

8

(λπ − λ0)
2

λπ + λ0
| {z }

f(n,p,k)

1

C
C
C
A

. (18)

Substituting (15) and (16) in (18) yields:



f(n, p, k) =
1

8

(2ps ((ek − k/2) − (ek − eks)))2

2ps ((ek − k/2) + (ek − eks))

=
ps

4

((k/2) ((2n − k)s − 1))2

(k/2) ((2n − k)(2 − s) − 1)

Fors = ω(1/n) we have(2n − k)s = ω(1). Thus,

f(n, p, k) '
ps

4

(k/2) ((2n − k)s)2

(2n − k)(2 − s)

'
ps

4

s2

2 − s
k (n − k/2) . (19)

Using (4), (5), and (19), we have,

E [S] ≤ 2
nX

k=2

nk · exp(−f(n, p, k))

(a)
' 2

nX

k=2

nk exp

„

−k

„

n −
k

2

«
ps

4
·

s2

2 − s

«

(b)

≤ 2

∞X

k=2

exp

„

k

„

log n −
nps

8
·

s2

2 − s

««

, (20)

where(a) is derived using (19), and(b) usesk ≤ n. The geometric
series goes to zero if the first term goes to zero, which is implied by
the condition in the statement of the theorem. This completes the
proof. �

A more direct approach to prove the result would be to try to
condition on a property of the underlying graphG and/or ofG1,2

that is both asymptotically almost sure, and for which one could
show that uniformly over all permutationsπ, the number of errors
is higher than for the identityπ0. It is difficult to identify such a
property that would make the second part of the problem tractable.
Instead, we show the result using a method commonly employed
in the random graph literature [5, 13], which allows us to analyze a
fixed permutationπ over the full probability spaceG(n, p; s).

A remarkable aspect of our result is that for fixed similaritypa-
rameters, the condition isps = 8c log n/n for somec(s) > 1. As
expected,c(s) = (2− s)/s2 is monotonically decreasing in(0, 1),
andc(1) = 1. Thus, for an overall edge sampling probabilityps of
a bit larger than8 log n/n, with high probability the identity per-
mutation minimizes the error function and yields the correct map-
ping. Note that the threshold for connectivity ofG1,2 = G(n, ps)
(and for the disappearance of isolated vertices) isps = log n/n [5,
13]. It is obvious that it is impossible to perfectly match a pair of
graphsG1,2 when at least one of them possesses more than one iso-
lated vertex (as these necessarily give rise to multiple permutations
with equal error counts). Therefore,ps = log n/n is a lower bound
for zero-error graph matching using any technique (i.e., any cost
function). Our bound forG(n, p; s) matching is therefore tight, up
to a constant function ofs.

For the case ofs = 1, the approximate graph matching prob-
lem is equivalent to the classical automorphism group problem for
random graphs [5]. Specifically, it is known thatG(n, p) is asym-
metric (has an automorphism group of size one) forp = log n/n+
ω(1). This suggests that the constantc(s) in our result can be im-
proved upon through more refined bounding techniques. Indeed,
we use relatively loose bounds in several places: in particular, we
underestimate the mean ofXπ quite significantly by ignoring the
positive correlation (within each cycle ofπ) in the terms of (6);
also, we assume the worst-case dependence betweenXπ andYπ in
(10), even though they are in reality positively correlatedthrough

the generatorG. These bounds are sufficient to show the asymp-
totic result to within a constant, but more precise techniques akin
to those used to show the classical automorphism result may al-
low to go further. Another obvious extension of our work would
employ other generator graph structures such as random regular
graphs, small world models, or scale free graphs.

5. NUMERICAL EXPERIMENTS
To be mathematically tractable and parsimonious, our modelin-

evitably embodies several strong assumptions: (i) the underlying
graph is aG = G(n, p) random graph, and the edge sets of the
“visible” graphsG1,2 are sampled (ii) independently and (iii) with
identical probabilitys from G. Despite these assumptions, we be-
lieve that our model and our result on anonymity conditions have
implications for real networks and scenarios. Although we are un-
able to explore the validity of our assumptions in full generality,
we wish at least to provide some evidence to justify them. First, it
is fairly clear that the underlying graph of a social networkwould
possess a structure very different from aG(n, p), as demonstrated
in many studies illustrating fascinating properties such as skewed
degree distributions and the small-world effect. However,we con-
jecture that de-anonymizing two networks sampled from a random
graph is harder than more “structured” networks. A random graph
is in some sense “maximally uniform”, and we therefore believe
that for other, more realistic hidden graphsG, de-anonymization
might in fact be possible under even weaker conditions. Thisis of
course a promising and fascinating area for further research. Sec-
ond, we consider de-anonymization successful if the error function
∆(.) has a unique minimum atπ0. We argue that this function is
not too sensitive to a non-uniform sampling process over theedge
set (i.e., assuming each edgee is sampled with its own sampling
rates(e)), provided the sampling process is similar in both graphs,
and uncorrelated across edges. This is because the impact ofthis
non-uniformity onX0 andXπ above would cancel out to a certain
extent. On the other hand, if the sampling process to obtain the two
samplesG1 andG2 were very different, then this could make de-
anonymization much harder. For example, if the sampling rate over
some subset of vertices were atypically large inG1 compared to the
rest, but atypically large for adifferentsubset inG2, then these two
high-rate subsets would be likely to be falsely matched. Therefore,
it appears that de-anonymization would be quite sensitive to such
differences in the sampling process forG1 andG2.

While we have not quantified the above argument, it did lead
us to explore the stability of the sampling process through some
numerical experiments. In order to motivate and illustratethe con-
cept ofsimilarity between networks, and also verify the assumption
of independencein sampling the edges, we present an example of
a real social network: an email graph, in which nodes represent
email addresses and edges represent message exchanges. Thenet-
work evolves in time through the observation of new messagesthat
are exchanged.

We consider a dataset of email messages collected at the mail
server of EPFL. The dataset includes logs of email exchangesamong
users on a weekly basis for a period of 75 weeks. In our dataset,
the email exchangesamong EPFL usersis considered (i.e., inter-
nal EPFL network). The dataset includes snapshots of the network
aggregated by week, such that timestamps are in the timescale of
weeks (i.e., all messages sent in a particular week have the same
timestamp). Using such dataset, we construct the email network of
each week for the internal EPFL network.

Having introduced the above, we investigate the similaritybe-
tween different snapshots of the network, each being a sample of
an underlying hidden email network. Note that in order to mapreal
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Figure 3: Estimated average edge overlap among overlapped
nodes for EPFL internal network, as a function of window size
and distance.

data to our sampling model, the existence of a hidden underlying
graph (including all possible email exchanges over all times) is in-
evitable - to which we do not have access. However, measuringthe
amount ofedge overlapbetween different snapshots gives us an
estimation of the similarity degree between different network sam-
ples, or whether the graphs are the outcome of similar sampling
processes. Also, since two network snapshots do not containthe
same number of nodes necessarily, we estimate the edge overlap as
the proportion of edges among overlapped nodes that exist inboth
graphs.

To accomplish the above, we need to pick two networks to be
compared. We randomly choose a starting timestampts (week
number) in the entire dataset, and construct the first graph starting
from ts accumulated over a window size ofτ weeks. For the second
graph, we build it starting from timestampts+τ+t−1, again accu-
mulated over a window size ofτ , wheret denotes the time distance
between the two graphs (in weeks). In other words,τ corresponds
to the density of the graph (the larger it is, the denser the graph
will be), andt implies the time distance between different samples.
As an example,τ = 1, t = 1 corresponds to the email network
of two consecutive snapshots (each consisting of email exchanges
over a one-week period), whereasτ = 2, t = 3 corresponds to two
graphs, each consisting of email exchanges over a period ofτ = 2
weeks, with a time distance oft = 3 weeks. Finally, for each value
of τ andt, we repeat the random choice of the networks 30 times
and compute the average.

Figure 3 depicts the estimated average edge overlap as a func-
tion of the windows size and time distance. It can be observedthat
the estimated edge overlap is quite significant, and it also exhibits a
small increase asτ increases andt decreases, which matches intu-
ition since it is expected that two larger and denser networks have
more overlap, and as the samples are farther apart the overlap de-
creases. However, this change is small over a wide span of the
density and distance values. Thus, the graph similarity is fairly ro-
bust over different densities and distances. The experiment shows
that two graphs sampled from a hidden underlying graph (a hidden
overall email network in this case) are similar in structure(even if
the sampling processes are non-uniform), with the samplingpro-
cess being quite stable over different intervals.

Finally, we verify the assumption of independent edge sampling
in our model, through looking at the correlation among the edges.
In general, the emergence of an edge might correlate with theex-
istence of other edges. In order to investigate how far the indepen-
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Figure 4: The CDF of the p-values of the Pearson’s Chi-Square
test for independence, for 1) random adjacent edge pairs (top
curve), 2) random edge pairs in the entire graph (bottom
curve). Usingα = 0.05, the test verifies the statistical equiv-
alence of edge pairs in the EPFL dataset.

dence assumption is from reality, we examine edge correlation in
the EPFL internal network. To do so, we choose a random pair
of edges from the final accumulated graph (i.e.,τ = 75), and ex-
amine their joint appearance in 75 weekly snapshots. We use the
Chi-Square test for independence to determine whether there is a
significant relationship between the appearance of the two edges.
We assume a null hypothesis that two randomly chosen edgese1

ande2 appear independently, and use the Pearsonχ2 test to decide
whether we should reject the null hypothesis, separately for each set
of 75 edge pair appearances. We compute theχ2 test statistics of

each sample set of 75 weeks asX2 =
P (Oi,j−Ei,j)2

Ei,j
, i, j = 0, 1,

wherei denotes the existence (1) or non-existence (0) mode ofe1

(similarly j = 0, 1 for e2), Oi,j is the observed frequency count of
e1 at modei ande2 at modej, andEi,j = ni ∗ nj/n, ni being
the total number of sampled observations ofe1 at modei (simi-
larly nj for e2 at modej) andn being the total number of samples
(75). The p-value is calculated asP

˘
X2 ≤ χ2(1)

¯
, whereχ2(1)

is a Chi-Square random variable with one degree of freedom, as the
number of bins for each categorial variable equals 2. We derive the
p-value of the test and reject the independence hypothesis if the p-
value is smaller than the significance level (α = 0.05 in our tests).
Repeating this for a large number of random edge pairs (752 inour
experiments), we find that93% of the edge pairs are statistically
indistinguishable (p-value> α = 0.05).

To strengthen our test even further, we do the same experiment
above, by choosing random pairs ofadjacentedges - i.e., edges in-
cident to the same node - thinking that such edges might express
a high correlation. We find that even in this case, most edge pairs
(72%) are statistically independent. Figure 4 depicts the CDF of
p-values found for each selected pair over 75 weeks, for bothex-
periments. The plot clearly shows that in most cases, p-value is
greater thanα, as mentioned above.

Finally, we repeat the above experiments for triple edges , i.e.
choosing three random edges in the accumulated graph, the null
hypothesis being that three randomly chosen edgese1, e2 ande3

appear independently. Again, we consider two cases, one where
the edges are chosen randomly in the entire graph, and the other
further correlated version where the edges are sampled fromthe set
of 3-chains in the graph, i.e. paths of length 3. Figure 5 depicts
the CDF of the p-values for each selected triple over 75 weeks, for
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Figure 5: The CDF of the p-values of the Pearson’s Chi-Square
test for independence, for 1) random chain of three edges (top
curve), 2) random triple edges in the entire graph (bottom
curve). Usingα = 0.05, the test verifies the statistical equiv-
alence of triple edges in the EPFL dataset.

both experiments, repeated 1000 times. It is observed that81% of
the random triple edges are independent. Further, for the correlated
chain of edges, we observe that50% of the random3-chains are
statistically indistinguishable. Further experiments show that as the
number of randomly chosen edges increases, there will be a higher
dependence for their joint appearance, as expected.

Our results suggest that the independence assumption clearly
does not hold generally, but many small sets of edges do behave
independently. To what extent the i.i.d. assumption built into our
model is realistic, in the sense that it would correctly predict the
boundary of privacy in real networks, is a subject of furtherinves-
tigation.

6. DISCUSSION AND CONCLUSION
In this paper, we considered the privacy issue in social networks

and investigated the possibility of de-anonymization froma math-
ematical perspective. We defined the problem in the context of ap-
proximate graph matching, with the goal of finding the correct map-
ping between the node sets of two structurally similar graphs. Us-
ing ideas from graph sampling in modeling evolution of networks,
we proposed a probabilistic model to derive two sampled versions
of an underlying graph as “noisy” versions of the networks tobe
matched. Elaborating our model for the case of random graphs,
we proved that using the simplest matching criterion based only
on network topology, a perfect matching between the nodes can be
established with high probability as the network size growslarge,
under simple conditions for the sampling process. More specifi-
cally, we proved that a surprisingly mild condition on the scaling
of the expected degree with the number of nodes is sufficient for de-
anonymization to be feasible. For this, we expressed lower bounds
for the sampling probability, or more intuitively, the extent of over-
lap in the edges of two graphs, so that it yields perfect matching.

Two conditions in our theorem ares = ω(1/n) andps → 0.
How these parameters relate to real networks is of course a crucial
and interesting question. Social networks tend to be sparse(p →
0), and a reasonable assumption may be to assume a fixed average
node degree (p = c/n), as the number of contacts is usually the
result of local interactions that should not be influenced bythe rest

of the network3. The scaling ofs is more debatable, as it depends
on the nature of the two networks. IfG1 andG2 capture the social
interactions between a set of people using different methods (e.g.,
email and phone calls), then it would make sense to postulatea
constants independent of the size of the network, as the choice of
method (i.e., generating a link) would be a purely local one,and
therefore not influenced by the rest of the network. However,more
cross-domain data should be studied to verify this.

Our result shows that given a specific cost function∆(.), a pair
of correlated graphs can be perfectly matched under certaincon-
ditions. An interesting question would be the converse: canwe
find conditions such that no cost function could give a match?In
theG(n, p; s) model, it is straightforward to show such a converse
of the formps = o(log n/n), as alluded to before. In this case,
G1 andG2 would have isolated vertices a.a.s., and obviously no
method would be able to determine the correct matching among
these. More precise converses, as well as variations of our model
(e.g., assuming other generator graphsG) are the topic of future
work.

Our work implies the feasibility of de-anonymization of a tar-
get network by using the structural similarity of a known auxiliary
network, and raises privacy concerns about sharing the simplest
topological information of users with partners and third-party ap-
plications. One consequence of our work might be guidelineson
how to release or share only sampled versions of networks, byen-
forcing the sparsity constraint to guarantee anonymity. This would
be promising provided such a thinned-out network would still pro-
vide enough information for the task at hand.

In future, we intend to generalize our approach to a broader class
of graphs. As discussed above, we conjecture that in some sense, a
random graph as the generatorG may be more difficult than a more
“structured” graph. On the other hand, the i.i.d. sampling process
in our model is an idealistic assumption, and the impact of relaxing
it should be explored. Finally, and perhaps most importantly, while
this paper proves theexistenceof the perfect matching using the
proposed error function, the algorithmic complexity of searching
in such a vast space is still an open problem.
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