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ABSTRACT

The proliferation of online social networks, and the conitant
accumulation of user data, give rise to hotly debated isefips-
vacy, security, and control. One specific challenge is tlzish
or public release chnonymized dataithout accidentally leaking
personally identifiable information (PII). Unfortunatelyis often
difficult to ascertain that sophisticated statistical teghes, po-
tentially employing additional external data sources,wrable to
break anonymity.

In this paper, we consider an instance of this problem, where
the object of interest is the structure of a social netwonk, ia
graph describing users and their links. Recent work dematest
that anonymizing node identities may not be sufficient tqokibe
network private: the availability of node and link data fran-
other domain, which is correlated with the anonymized nétwo
has been used to re-identify the anonymized nodes. Thig [mpe
about conditions under which such a de-anonymization gote
possible.

We attempt to shed light on the following question: can we as-
sume that a sufficiently sparse network is inherently anausn
in the sense that even with unlimited computational power, d
anonymization is impossible? Our approach is to introducana
dom graph model for a version of the de-anonymization prable
which is parameterized by the expected node degree and larsimi
ity parameter that controls the correlation between twplgsaover
the same vertex set. We find simple conditions on these p&zesne
delineating the boundary of privacy, and show that the mealen
degree need only grow slightly faster thiag n with network size
n for nodes to be identifiable. Our results have policy implaras
for sharing of anonymized network information.
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1. INTRODUCTION

The emergence of online social networks such as Faceboatk, Tw
ter, MySpace, Linkedin, etc. with hundreds of millions oérsim-
plies that an unprecedented amount of user data is now iratindsh
of the providers of such services. Not surprisingly, the feie of
this information, the appropriate notions of privacy andusgy,
and the technical and legal tools to control its sharing dasskedn-
ination, have become controversial and hotly debated pnablin
the scientific community and beyond.

There are many reasons why social network data might becgshare
between organizations, or even released into the publicadom
First, this information is very valuable for scientific poges: the
modest number of publicly available datasets has led toadbva-
riety of research projects and results. For example (andowit
any claim to exhaustiveness), promising research dimesiio this
area include probabilistic modeling of network propertesl dy-
namics [19], real data measurement and anali/sis[[25. 246]16,
and developing scalable algorithms to navigate and infex tlam
large-scale network5T1B.120]. Obviously, this requiresagicare in
order to avoid the accidental release of sensitive infoilonaibout
individual users. As AOL's public relations disaster a feeays
ago [1] illustrates, simply anonymizing user identitiesynmat be
sufficient to prevent an attacker from identifying indivdwsers
through other means. Second, online social networks aredse
ingly integrated with other services on the web, which resgia
certain amount of sharing between organizations (e.gebfaak
third-party applications and the facebook connect fumotio third-
party websites). Third, it has been recognized that soealork
information has strong potential for marketing purposeg.{dor
churn prediction[132] or for targeted advertisemént [12p) all of
these areas lurks the risk of accidental or deliberate titola of
user privacy. Several works address the privacy issue iialgoet-
works [8,[1T], and propose mechanisms to preserve usevsoyri
[39, [9], or suggest the vulnerability of online social nethsto
different attacks[[15].

In order to protect users’ privacy, an established methae-is
placing their identities with random unique IDs, a processvkn
asanonymizationHowever, recent works have shown methods that
are able to infer the true user identities under certain itiomg, by
relying on side informatiori 28] 8. 88]. We present a moreified



summary of the related work in this field in Sectign 2. Most of
the works in this area focus on proposialgorithmsandmethods
for de-anonymizing networks, tested on various real dédaden-
line networks[[2B._27]. Papers in this category proposerilgas
for either attackingpecificusers in publicly available network data
and revealing their identity ]3], or de-anonymizing a fiantof all
users in a network [38]. A major challenge in all these scenar
ios is scalability. Recently, algorithms that are applieafor de-
anonymizing large networks have also been introduceld 28, 2
What is still lacking in the literature is a thorough undargting
of the conditions under which de-anonymization is feasiblée
would like to be able to ascertain when a network’s anonyicéty
be guaranteed, given the side information and computdtiena
sources available to an attacker. In this paper, we attemnpicke
a step in this direction. We study a challenging versionnfithe
perspective of an attacker) of the de-anonymization probiehere
the attacker has no side information about nodes in the mktiwo
be attacked other than network structure, specifically eetated
version of the edge set of that network obtained from othercas.
Contribution. To the best of our knowledge, ours is the first pa-
per to pursue a theoretical treatment of network de-anargtioin
problem, and in particular, considering its feasibility farge net-
works. Our contributions are three-fold: We explore funéam
tal limits for de-anonymization regardless of the specifioethm
employed, and investigate the relationship between nétpanam-
eters and the possibility of guaranteeing anonymity in soet
works. Moreover, we introduce a mathematically tractabéeleh
that captures the notion of correlated networks, and usegltda
of graph sampling to control the structural similarity ofotgraphs.

been used in other contexts, e.g., as a way to estimate nade an
edge features from the network [35.] 11], or to generate rdiffe
shapshots of an observed network as samples from a hidden-und
lying graph [31]. The structural similarity we seek is aclaieé by
sampling the two graphs from an underlyiggneratorgraph. Our
key result is that under surprisingly mild conditions on thedel
parameters, depending on the extent of the overlap between t
two graphs, it is possible to establish a perfect mappinwéent
the nodes of the two graphs as the number of nodes grows large.

Our results for approximate graph matching not only exhst
risk of a privacy breach in the release of even the most bafic-i
mation about real networks (i.e., only anonymized usersthei
links), but can have useful applications as well. If matghisifeasi-
ble, one can combine several “noisy” public (anonymized}ieas
of social networks obtained from different sources into aene-
cise, combined network. In another scenario, suppose wethav
call graph between all the phone numbers in an organizagio,
the graph of email exchanges between email addresses sathis
organization. One could then establish the correspondssteesen
phone numbers and email addresses solely through theustuxdt
the two social networks (which we expect to be similar butexet
actly equal).

We should emphasize that this paper only addressegsaiséil-
ity of de-anonymization. This amounts to establishing thatethe
exists a cost function over the two graphs, such that minmgiz
this function finds the correct matching with high probaiiliwe
do not address the computational complexity of this pracése
recent work of Schmatikov and Narayan&nl[28] report suctess
de-anonymizing fairly large networks. However, their wimkuses

This model is based on random graphs, and can be viewed as a genon heuristics for matching, which they evaluate over sampieeal

eralization of the classical automorphism group problemrém-
dom graphslIb, chapter 9]. Finally, we prove that a surpgigin
simple and mild condition on the scaling of the expected ekegr
with the number of nodes is sufficient for de-anonymizatiote
feasible, with strong implications on privacy.

The following important observation is behind our modelémy
proach: In most real cases, although nodes are anonymizéd in
released data of social networks, the structure of the gsaphe-
served, i.e., this is equivalent to having access to an etddb
graph. We assume that an attacker has access to an awdliary |
beled network, in which user identities are known. Such woet
could be obtained for example from public data, or infernexrf
other sources. This type of attack is also considered in [28]

To give a concrete example, we ask whether it would be safe
for an academic institution to release a database of anaegmi
email or call logs, if an attacker has available to him a datesl
but highly incomplete set of likely social links between ttaff
and students of that institution (e.g., by mining the publab site
of groups, departments, and so on)? Could an attacker use thi
incomplete side information to reverse-engineer the amirgd
identities in the database, and therefore the communicagdtern
of this university? More generally, most of us have manyediff
ent online identities that are in different hands, and theaddinks
in these different domains are likely not completely ideaiti but
correlated.

Itis clear that the availability of additional side infortian (e.g.,
class labels for users such as from demographic informaton
richer link information such as directed interactions,digtamps)
can only further benefit the attacker. Here, we assume thaitth
tacker only has the graph structure for re-identificationades.

In this paper we explore the problem of approximate grapltmat
ing introduced above. We use the notiongodph samplingo de-
velop a model oBimilar or correlatedgraphs. Graph sampling has

social networks, while our focus is to understand the boriesl@f
anonymity in terms of fundamental network properties.

The remainder of this paper is organized as follows. Sefion
briefly discusses related work. In Sectfdn 3, we formallyriethe
de-anonymization problem, and introduce a mathematicalemno
for approximate graph matching of large networks. Sedflda 4
the core of this paper where we prove that in our model, perfec
matching is feasible under mild conditions on the expectgtek
of the graphs and on their similarity. Sectldn 5 discussesarical
experiments using social network data to justify the asgiompin
our model. Finally, Sectidd 6 concludes the paper with adision
of the implications of the result.

2. RELATED WORK

We briefly summarize related work in network de-anonymazati
and approximate graph matching. This can be categorizedl-as f
lows: 1) papers relevant to network modeling with directlapp
cation for de-anonymizing users in social networks, 2) paje
the area of graph isomorphism and approximate graph magchin
mostly from applications in machine learning and patteoogai-
tion problems.

In the first category, in their recent work]28], Narayanamnl an
Shmatikov propose a novel algorithm for de-anonymizingiadoc
networks, based purely on network topology. Their alganitses
the structural similarity of a target and an auxiliary netikvoAl-
though the goal and problem definition of our contributiosiia-
ilar to theirs, we seek insights into the fundamental coonét for
de-anonymization to be feasible, while they demonstraeffec-
tiveness of de-anonymization of a real social network ubiggyis-
tics.

Backstrom et al. introduce active and passive attacks fer de
anonymization of social network5][3]. They show how a target
users can be identified in a very large network by identifying



neighborhood subgraph around the user using only netwouk-st
ture. They investigate the effectiveness of these attaokts the-
oretically and empirically. A limitation of active attacksthe ne-
cessity of creating fake (dummy) nodes in the social netwefkre

its release (which is of course a strong limitation in prae}tj while
passive attacks are capable of re-identifying only a lichitamber

of users, but without the need for fake nodes. Thus, the metho
works best for de-anonymization epecificusers within the net-
work, or a small fraction of all users. A similar attack model
analyzed in[[1D], where an attacker is allowed to issue gadhat
reveal ak-hop subgraph around a target node; they analyze the pri-
vacy risk to the identity of the target node and to the presesic
specific links, both using random graph models and real data.

Finally, a novel de-anonymization attack is introduced byr#/
dracek et al.[T38] that exploits group membership infororativail-
able on social networking sites. They show that informatibout
the group memberships of a user is often sufficient to unjquel
identify this user, or at least to significantly reduce thec$@ossi-
ble candidates, and assess the feasibility of the attatkthebret-
ically and empirically.

In the second category, several works propose differertit- tec
nigues for exact and approximate graph matching, mostiynage
processing and pattern recognition. [Inl[30], Cordella epedpose
a so called VF algorithm as a solution fxactsubgraph matching,
or subgraph isomorphism, exhibiting less complexity coragao
the famous Ullmann backtracking algorithm[37]. In]36]amiand
Patel suggest an approximate graph matching tool (TALE)yidpn
anovel indexing method that incorporates graph strucinf@ama-
tion in a hybrid index structure. Although the structurdbimation
for matching graphs is used, the approximate matching prolih
such cases is generally defined as node mismatches or ist@msi
cies in node attributes, rather than structural differeficedges)
as in our case.

Other works in this area propose different methods suchras ra
dom walks on graph$]7], using EM algorithm and singular galu
decomposition[22], and the edit-distance criterion fquragimate
matching different types of graphs134.126]. Because of tira-c
plexity of matrix manipulation and computation of probétigilis-
tributions, such methods are not feasible for applicatmrvery
large networks.

Our contribution to this existing body of work is to introdue
mathematically tractable, parsimonious model for the |emmbof
matching two similar graphs, and to derive asymptotic besund
terms of fundamental parameters for network anonymityeirech-
dently of specific algorithms.

3. PROBLEM DEFINITION AND MODEL

We define the problem of matching the vertex sets of two graphs
and introduce thé&(n, p; s) random graph model, which generates
two similar graphs;,> over the same vertex set. As mentioned
before, the goal is to match the vertices of two unlabelegltga
whose edge sets are correlated but not necessarily equaimdh
tivation for our model is its parsimony and symmetric stavet
ingredients for its mathematical tractability.

The model assumes that the observed netwGtks are incom-
plete manifestations of a true underlying netwdarkof relation-
ships. For example, the edges@fmight represent the true rela-
tionships between a set of people, while » capture the observ-
able interactions between these people, such as commongat
(email, phone calls, proximity, and so on), or “friend"agbnships
in a social network(G 2 might alternatively represent observations
of the same network at different points in time.

To elaborate on this, le&F = (V, E) be a generator graph with

vertex sefl” and edge seE'. We assume here thét is an Erdds-
Rényi random grapti’(n, p) with n nodes, where every edge exists
with identical probabilityp, independently of all the other edges.
For a fixed realization oG = G(n,p), we generate two graphs
G1,2 = (V, E1,2) by sampling the vertex sét twice. More pre-
cisely, each edge € F is in the edge set of; » with proba-
bility s, independently of everything else. As a result, the sample
graphsGi 2 are themselves Erdds-Rényi random grégn, ps),

but their edge sets are correlated, in that the existence efige

in FE; implies that the existence of this edge i is more likely
than unconditionally (provideg < 1 ands > 0) (see Fig[L). The
G(n,p) model has been widely used in the study of complex and
social networks[14, 14, 28] 2], which makes it a plausibledidaite

for the study of the approximate matching problem.

Our goal is to determine whether it is possible to find the cor-
rect mapping between the nodes®{f and G2, assuming we only
see unlabeled versions of these two graphs (and withousstoe
the generato€?). This is equivalent to the assumption that the two
graphs have different vertex label sets that contain narimétion
about the graphs, such as random labels allocated in an iy
tion procedure. Using this model, our problem can be viensed a
the generalization of the classical automorphism grouplpro in
random graphs. We discuss this and also the effect of theelobi
other graph models at the end of Secfibn 4 and also in Sddtion 6

We formally define the graph matching problem as follows. We
assume that/; » are only available in unlabeled form (or equiva-
lently, with two arbitrary and unknown sets of labels). kredenote
a permutation o, i.e., one way of mapping vertices fra@ onto
G>. The number of such permutationsris The identity permu-
tation, denoted byto, is the correct mapping between the nodes of
G1 andG2. We seek an error function over the set of permutations,
which succeeds if it is uniquely minimized hy.

Therefore, to solve the matching problem, we are interested
show the following:

Among all possible permutations between the two vertextbets
identity permutatiorr, is the permutation that minimizes an error
function, giving the node matching between the two graphs.

The error function should measure to what extent the strestu
of graphsG: and G- resemble each other under a given permuta-
tion. The structural difference can be viewed as the diffeecbe-
tween the corresponding edge sets. This idea has also hesstiin
gated in the field of pattern recognition where #uge-consistency
of two graph patterns (in matching a data graph to a modehyrap
is used to obtain the correspondence eriorsi[26, 22].

We introduce the error measure for edge-inconsistencysidon
ering only the structures of two grapti§ (V, E1) andGz(V, E»).

The matching erroA can be generally defined as

Ar = Z Lin(eygmoy + Z 1r—1@e¢ey

e€eFR, ecEs

@)

wherelg 4, denotes the indicator function. In other words, permu-
tation = defines a mapping between the nodeg-efand G-, and

A counts the number of edges that exist in one graph with the cor
responding edges not existing in the other graph under rimatah
This is the simplest error function that can be assumed fon su
setting when comparing the structures of two graphs. White t
cost function is not necessarily optimal (depending on treply
model) nor computationally efficient, it lends itself to peblistic
analysis. Specifically, we prove below that if the samplimghp
ability s is beyond some threshold, asgrows large, the identity
permutationro minimizes the error functiod1).
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Figure 1: Sampling process applied to the underlying graphz,
resulting in the two sampled graphsG; and G- to be matched.

We reiterate that we do not address the algorithmic aspécts o
de-anonymization, including the computational complesitenu-
merating all mappings and computing their error. Insteasnext
show conditions on the model parameters such that minignidia
error function is almost surely equivalent to identifyitg tcorrect
mapping using only the structures of the two sampled graphs,
we show thatle-anonymization is feasihland it is not possible to
guarantee anonymity.

4. CONDITIONS FOR PERFECT MATCH-
ING

Following the model introduced in Sectibh 3, we state thenmai
theorem of this paper, followed by its proof.

THEOREM 4.1. For the G(n, p; s) matching problem wit =
w(1/n)andp — 0, if
52 . 8logn

7% @)

then the identity permutation, minimizes the error criteriorfll)
a.a.fl, yielding perfect matching of the vertex setgafand G».

+w(nt),

pSs

PROOF We denote by\, the error induced by the identity per-
mutation andA . the error induced by the permutatian Figure2
depicts two possible mappings between the sémandG» shown
in Figureld corresponding to the identity mappingand a permu-
tation w2 (in which all nodes are fixed except two) respectively,
together with their error.

To show the result, we defirid, on V as the set of all permu-
tations that fixx» — k nodes and permutke nodes, calling them an
order permutation. The number of such permutations, referred to
as “rencontre numbers”, is as follows[33]:

(Z) (1K),

where!k is the subfactorial ok, denoting the number of permuta-
tions of k& objects in which no object appears in its natural place. It
is easily verified thak(n, n— k) can be upper-bounded as follows:

x| = R(n,n — k) ®)

a.a.s: asymptotically almost surely, i.e., with probapitjoing to
1 as the number of nodesgoes to infinity. In generaBsymptotic
refers to the behavior fot — co.

2We use the standard asymptotic notation@, w, £2, andé).

§nk.

= (™) oy < (™) (F

L | <k,> )< (7] (3 @)
The random variables introduced below are indexed byhich

we omit unless required by the context. We define

Sk=Y L{a,<aq)-

welly

Sk counts the number of ordérpermutations for which the num-
ber of matching errors is at most that of the identity perrioita
Thus, S = ZZZQ S is the total number of false matches. The
expected number of errors can be computed as:

E[S] = > E[Si]=)_ > E[lia,<ap]
= Zn:ZP{AW—AOSO},

k=2 melly,

where the expectation is ové(n, p; s).

Figure 2: The identity permutation 7, versus a permutation
mo € Il that mismatchesk = 2 vertices for mapping G to
G>. The error in each case corresponds to the number of edges
in one graph with the mapped edge not existing in the other
graph. Thus, Ap = 8 and A, = 10, where A, is the edge dif-
ference as a result of the sampling process, anfl ., is induced
by both the sampling process and the wrong mapping of two
nodes inms.

S counts the total number of non-identity permutations thiat m
imize the error, and we need to show that with high probatila
such permutations exist. By the First Moment Method (foltayv
Markov's inequality), since is a non-negative integer-valued ran-
dom variable, to show th& {S = 0} — 1, it suffices to show that
E[S] — 0.

Using this method and substituting (4) in the above, it imthe
sufficient to show that

E[S] < i P{Ar— Ao < . 5
S1= D" mage P 00} 0. (®)



LEMMA 4.1. Let X; and X> be two binomial random vari-
ables with meang; and A2, wherehs > A;1. Then,

We bound the error probability for a fixed ordempermutation
m, i.e., we bound the probability term ifl(5). For permutation
let V: be the set of vertices for which # = (v), and letE, =
V> x V,i.e., the set of possible edges between one or two vertices
mismatched under. Note that every edge satisfyirg# w(e) is
in E.. The inverse is not true, because transpositions (a pair
(u,v) such thatr(u) = v andw(v) = w) induce invariant edges.
The cardinalitye,, of F is

1 ()\2 — /\1)2
— < < —— = 7 ).
P{X:;—X; <0} <2exp ( o > 9)

PROOF OFLEMMA. Let X; and X, be two binomial random
variables with means\; and \.. The probability of the event
{X2 — X1 < 0} can be upper-bounded as follows:

k
er = |Ex| = ( 9 ) + k(n—k),
P{Xz - X1 SO} < P{X1 2$}+P{X2 S:E},
where the first term is the number of unordered node pairsiboth

Vi, and the second term is the number of unordered node palrs wit for anyz. . .
one node ir;. We now find an upper-bound for the right-hand siddgf (10). We

As every edge in the complement ofZ,, (i.e., in(V x V) — Ey) use the Chernoff bounds for the binomial random variablesand
is by definition invariant under, they contribute equally td, and X> using the following theorenli [13]:
Ar. Therefore, we can writd, — Ay = X — Yr, where

(10)

If X € Bi(n,p)and\ = np, then,

Xe = > eem} ~ Yneenz} s .2
cChx PIX>A+t) < exp|—ont— ), t>0 (10)
27 +1/3)
Yo = Z |1{e€E71‘,} - 1{66E72r}|7 (6) t2
e€Ex P{X<A—-t} < exp <—ﬁ) , t>0. (12)

with Ex? = E. N E(G1,2), i.e., the set of edges ifi; » incident
to at least one mismatched vertex. Hérg,is the number of errors
for the identity permutation within the sét, i.e., the number of
sampling errors withirE.. Note thatX, andY; are not indepen-
dent, because they are functions of the same randonfsets

Y= counts the number of edges k. that are sampled in only

We upper-bound® { X, > 2z} andP {X, < z} using [11) and
@) (for two arbitrary positive values af andt> respectively).
We setr = (A1 + A2)/2, and thug; = t2 = (A2 — A1) /2. Using
A2 > A allows to bound the two exponents as follows:

one ofG1 2, i.e., the number of sampling errors under the identity P{Xi>a} < exp (_1 (X2 —A1)? )
permutation. The probability for each possible edge to bB(i6') - - 81+ (A2 —A1)/6
and exactly one of7; 2 is 2ps(1 — s). ThusY; is binomial with 1 (s — \p)?
probability 2ps(1 — s). < exp <—§W) ) (13)
For X, we need to proceed more carefully. Assumeasy > ! 2
0 transpositions. First, note that each transpositianiimuces one and
invariant edge = m(e) = 7~ '(e) in E, (such an edge contributes 12— \)?
to X with probability2ps(1 — s)). P{Xs <z} < exp <—— 2 2 >
The remaininge, — ¢ edges are not invariant undet Each 8 A2
pair of such edgege, w(e)) contributesl to X if e € G and < ex <_l (A2 — /\1)2) "
m(e) € G or vice versa (cf. [[6)). The probability for exactly - P 8 M+ J°

one of twodifferentedges inE. to be sampled i€ps(1 — ps).
Note that the terms i16) are dependent, because conditiona
|1{66E1} - 1{W(C)EE2}| =1, atleast one ot or 7(e) is present
in the generato€. Thus, the conditional probability of an adjacent

This completes the proof.[]

Now let A\ and )\, denote the means d&f . andY;. respectively,

HIE Y LY ' with values,
pair (either(7~*(e), e) or (w(e), w(w(e))) contributingl to (@) is
s(1 — ps). We conservatively ignore this positive correlation and Ar = 2ps(1—ps)(ex — k/2) (15)
stochastically lower-bound’, by assuming that each pair of edges Ao = 2pser(l—s). (16)
(e, m(e)) contributes an i.i.d. Bernoulli with parametirs(1—ps)
to (@). Since0 < s < 1,2 < k < n, andex ~ k(n — k/2), to satisfy

Ar > Ao we need toﬂave,

2ps(1 —ps)(k(n — k/2) — k/2) > 2psk(n — k/2)(1 — s)

Thus, X is stochastically lower-bounded by the sum of two in-
dependent binomiaBi (ex — ¢, 2ps(1 — ps))+Bi (¢, 2ps(1 — s)),
whereg is the number of transpositionsin By definition, a trans-

position can occur only between two vertices that are botti;in = 5> (i*ps) 1 7 (17)
Hence¢ < |k/2] < k/2. “r) 2n—k
Thus, we have which will be satisfied fos = w(1/n) andp — 0.
(stoch.) Thus, using the above lemma, we obtain,
X. > Bi(en—[k/2),20s(1-ps)) ()
Y= ~ Bi (ex, 2ps(1 — s)) . 8
(ex, 2ps(1 — 5)) ®) N
P{X,—-Y,<0}<2exp| - c——" (18)

We upper-bound the probability of the evgiX: — Y < 0}
using the following lemma, which holds regardless of depewé
betweenX . andY:

g )\Tr + )\0
—————
f(n,p.k)

Substituting[[TIb) and116) il {1 8) yields:



_ 1(2ps((en —k/2) — (en — ers)))”
T k) = e (er —B/2) T (e —ers))
ps _((k/2) (20 — k)s — 1))”
1 k/2)(2n—R)2—5) 1)
Fors = w(1/n) we have(2n — k)s = w(1). Thus,
ps (k/2) (2n — k)s)*
4 (2n—k)(2-3)

f(n,p,k) ~

2
~ PSS _
~ B2 km—k/2).

Using [@), [®), and{19), we have,

(19)

(a) AN E\ ps s
~ 2 —kln—=|=—"
S exp< <n 2) L.

(k <logn— % : 28_28>) , (20)

where(a) is derived usind{119), an@) usesk < n. The geometric
series goes to zero if the first term goes to zero, which isiadply
the condition in the statement of the theorem. This comsltie
proof. O

k=2

A more direct approach to prove the result would be to try to
condition on a property of the underlying grapghand/or ofG1 2
that is both asymptotically almost sure, and for which oneladto
show that uniformly over all permutations the number of errors
is higher than for the identityty. It is difficult to identify such a
property that would make the second part of the problemabdet

the generatoty. These bounds are sufficient to show the asymp-
totic result to within a constant, but more precise techesgakin

to those used to show the classical automorphism result tay a
low to go further. Another obvious extension of our work waul
employ other generator graph structures such as randontaregu
graphs, small world models, or scale free graphs.

5. NUMERICAL EXPERIMENTS

To be mathematically tractable and parsimonious, our miodel
evitably embodies several strong assumptions: (i) the nlyidg
graph is aG = G(n,p) random graph, and the edge sets of the
“visible” graphsGh 2 are sampled (ii) independently and (iii) with
identical probabilitys from G. Despite these assumptions, we be-
lieve that our model and our result on anonymity conditioageh
implications for real networks and scenarios. Although weumn-
able to explore the validity of our assumptions in full gexiity,
we wish at least to provide some evidence to justify themstFifr
is fairly clear that the underlying graph of a social netwarduld
possess a structure very different frontén, p), as demonstrated
in many studies illustrating fascinating properties sustsleewed
degree distributions and the small-world effect. Howewer,con-
jecture that de-anonymizing two networks sampled from doan
graph is harder than more “structured” networks. A randoaplr
is in some sense “maximally uniform”, and we therefore lwelie
that for other, more realistic hidden grapfis de-anonymization
might in fact be possible under even weaker conditions. iBhi$
course a promising and fascinating area for further rebed8ec-
ond, we consider de-anonymization successful if the etnoctfon
A(.) has a unique minimum aty,. We argue that this function is
not too sensitive to a non-uniform sampling process oveetige
set (i.e., assuming each edgés sampled with its own sampling
rates(e)), provided the sampling process is similar in both graphs,
and uncorrelated across edges. This is because the imptuis of
non-uniformity onX, and X . above would cancel out to a certain

Instead, we show the result using a method commonly employed extent. On the other hand, if the sampling process to obtaitvto

in the random graph literaturel [5.113], which allows us tolgraa
fixed permutatiorr over the full probability spacé&(n, p; s).

A remarkable aspect of our result is that for fixed similagt¢
rameters, the condition i®s = 8clog n/n for somec(s) > 1. As
expectede(s) = (2 — s)/s* is monotonically decreasing i, 1),
andc(1) = 1. Thus, for an overall edge sampling probabifity of
a bit larger thar8 log n/n, with high probability the identity per-
mutation minimizes the error function and yields the carreap-
ping. Note that the threshold for connectivity@f 2 = G(n, ps)
(and for the disappearance of isolated verticep}is- log n/n [B,
13]. It is obvious that it is impossible to perfectly matchairpf

samples7; andG. were very different, then this could make de-
anonymization much harder. For example, if the sampling osér
some subset of vertices were atypically largé&fincompared to the
rest, but atypically large for differentsubset inG2, then these two
high-rate subsets would be likely to be falsely matched r&foee,

it appears that de-anonymization would be quite sensitveuth
differences in the sampling process & andG-.

While we have not quantified the above argument, it did lead
us to explore the stability of the sampling process throughnes
numerical experiments. In order to motivate and illustthgecon-
cept ofsimilarity between networks, and also verify the assumption

graphsG,2 when at least one of them possesses more than one iso-of independencé sampling the edges, we present an example of

lated vertex (as these necessarily give rise to multiplenp&ations
with equal error counts). Therefongs = log n/n is a lower bound
for zero-error graph matching using any technique (i.ey, @st
function). Our bound fot7(n, p; s) matching is therefore tight, up
to a constant function of.

For the case of = 1, the approximate graph matching prob-
lem is equivalent to the classical automorphism group erolfor
random graph<]5]. Specifically, it is known th@tn, p) is asym-
metric (has an automorphism group of size one)fer logn/n+
w(1). This suggests that the consta() in our result can be im-
proved upon through more refined bounding techniques. thdee
we use relatively loose bounds in several places: in pdaticwe
underestimate the mean &f, quite significantly by ignoring the
positive correlation (within each cycle af) in the terms of [);
also, we assume the worst-case dependence betiteamdY’ in
@@0), even though they are in reality positively correlatieaugh

a real social network: an email graph, in which nodes reptese
email addresses and edges represent message exchangast-The
work evolves in time through the observation of new messtgds
are exchanged.

We consider a dataset of email messages collected at the mail
server of EPFL. The dataset includes logs of email exchaampesig
users on a weekly basis for a period of 75 weeks. In our dataset
the email exchangesmong EPFL userss considered (i.e., inter-
nal EPFL network). The dataset includes snapshots of thveonlet
aggregated by week, such that timestamps are in the tineestal
weeks (i.e., all messages sent in a particular week haveathe s
timestamp). Using such dataset, we construct the emailanktof
each week for the internal EPFL network.

Having introduced the above, we investigate the simildoity
tween different snapshots of the network, each being a saoipl
an underlying hidden email network. Note that in order to mesgh
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Figure 3: Estimated average edge overlap among overlapped
nodes for EPFL internal network, as a function of window size
and distance.

data to our sampling model, the existence of a hidden uridgrly
graph (including all possible email exchanges over all g in-
evitable - to which we do not have access. However, measthreng
amount ofedge overlapbetween different snapshots gives us an
estimation of the similarity degree between different rtnsam-
ples, or whether the graphs are the outcome of similar sagpli
processes. Also, since two network snapshots do not cotitain
same number of nodes necessarily, we estimate the edgapest|
the proportion of edges among overlapped nodes that exixatim
graphs

To accomplish the above, we need to pick two networks to be
compared. We randomly choose a starting timestampwveek
number) in the entire dataset, and construct the first graptirg
fromt, accumulated over a window sizeofveeks. For the second
graph, we build it starting from timestanap+ 7+t —1, again accu-
mulated over a window size of wheret denotes the time distance
between the two graphs (in weeks). In other wordsprresponds
to the density of the graph (the larger it is, the denser tlaplyr
will be), andt implies the time distance between different samples.
As an examples = 1,¢ = 1 corresponds to the email network
of two consecutive snapshots (each consisting of emailaasgds
over a one-week period), whereas= 2, ¢t = 3 corresponds to two
graphs, each consisting of email exchanges over a period=02
weeks, with a time distance of= 3 weeks. Finally, for each value
of 7 andt¢, we repeat the random choice of the networks 30 times
and compute the average.

random adjacent edge pairs
random edge pairs in the entire graph

P(p-value < pval)

. . . . .
05 06 07 08 09 1
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L
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Figure 4: The CDF of the p-values of the Pearson’s Chi-Square
test for independence, for 1) random adjacent edge pairs (fo

curve), 2) random edge pairs in the entire graph (bottom

curve). Usinga = 0.05, the test verifies the statistical equiv-
alence of edge pairs in the EPFL dataset.

dence assumption is from reality, we examine edge coroglati
the EPFL internal network. To do so, we choose a random pair
of edges from the final accumulated graph (i7e5 75), and ex-
amine their joint appearance in 75 weekly snapshots. Wehsse t
Chi-Square test for independence to determine whethee fhex
significant relationship between the appearance of the tige®
We assume a null hypothesis that two randomly chosen edges
ande, appear independently, and use the Peassotest to decide
whether we should reject the null hypothesis, separatelydoh set
of 75 edge pair appearances. We computexthéest statistics of
each sample set of 75 weeks¥$ = 3° (O”EfiE”)z, i,7=0,1,
wherei denotes the existence (1) or non-existence (0) mode of
(similarly j = 0, 1 for e2), O;,; is the observed frequency count of
e1 at mode: ande2 at modej, andE; ; = n; x n;/n, n; being
the total number of sampled observationsegfat mode: (simi-
larly n; for ez at modey) andn being the total number of samples
(75). The p-value is calculated &{X” < x*(1)}, wherex*(1)

is a Chi-Square random variable with one degree of freedertinea
number of bins for each categorial variable equals 2. Wevel¢hie
p-value of the test and reject the independence hypotHehis p-
value is smaller than the significance lewel- 0.05 in our tests).
Repeating this for a large number of random edge pairs (7681in
experiments), we find th&3% of the edge pairs are statistically

Figure[3 depicts the estimated average edge overlap as a funcindistinguishable (p-valug- o = 0.05).

tion of the windows size and time distance. It can be obseiivad
the estimated edge overlap is quite significant, and it albibits a
small increase as increases antldecreases, which matches intu-
ition since it is expected that two larger and denser netsvbeve
more overlap, and as the samples are farther apart the p\asia

To strengthen our test even further, we do the same experimen
above, by choosing random pairsaafjacentedges - i.e., edges in-
cident to the same node - thinking that such edges might sgpre
a high correlation. We find that even in this case, most edgs pa
(72%) are statistically independent. Figlie 4 depicts the CDF of

creases. However, this change is small over a wide span of thep-values found for each selected pair over 75 weeks, for &oth

density and distance values. Thus, the graph similaritstiig/fro-
bust over different densities and distances. The expetistesws
that two graphs sampled from a hidden underlying graph (@emd
overall email network in this case) are similar in struct(eeen if
the sampling processes are non-uniform), with the samiog
cess being quite stable over different intervals.

Finally, we verify the assumption of independent edge sargpl
in our model, through looking at the correlation among thgesd
In general, the emergence of an edge might correlate witlexhe
istence of other edges. In order to investigate how far tHepen-

periments. The plot clearly shows that in most cases, peveu
greater thany, as mentioned above.

Finally, we repeat the above experiments for triple edges., i
choosing three random edges in the accumulated graph, the nu
hypothesis being that three randomly chosen edges. andes
appear independently. Again, we consider two cases, oneewhe
the edges are chosen randomly in the entire graph, and tee oth
further correlated version where the edges are sampledtfrerset
of 3-chains in the graph, i.e. paths of length 3. Fidre 5 depicts
the CDF of the p-values for each selected triple over 75 wdeks
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Figure 5: The CDF of the p-values of the Pearson’s Chi-Square
test for independence, for 1) random chain of three edges (o

curve), 2) random triple edges in the entire graph (bottom

curve). Usinga = 0.05, the test verifies the statistical equiv-

alence of triple edges in the EPFL dataset.

both experiments, repeated 1000 times. It is observedsilyatof
the random triple edges are independent. Further, for threlated
chain of edges, we observe tH#% of the random3-chains are
statistically indistinguishable. Further experimentsvghhat as the
number of randomly chosen edges increases, there will bghehi
dependence for their joint appearance, as expected.

Our results suggest that the independence assumptioriyclear
does not hold generally, but many small sets of edges do behav
independently. To what extent the i.i.d. assumption batib iour
model is realistic, in the sense that it would correctly wethe
boundary of privacy in real networks, is a subject of furtimes-
tigation.

6. DISCUSSION AND CONCLUSION

In this paper, we considered the privacy issue in social odsv
and investigated the possibility of de-anonymization frammath-
ematical perspective. We defined the problem in the confeagp-o
proximate graph matching, with the goal of finding the carneap-
ping between the node sets of two structurally similar gsapys-
ing ideas from graph sampling in modeling evolution of nekgo
we proposed a probabilistic model to derive two sampledioess
of an underlying graph as “noisy” versions of the network$&¢o
matched. Elaborating our model for the case of random graphs
we proved that using the simplest matching criterion basgg o
on network topology, a perfect matching between the nodedea
established with high probability as the network size grtavge,
under simple conditions for the sampling process. More ifipec
cally, we proved that a surprisingly mild condition on thelgog
of the expected degree with the number of nodes is sufficiele-
anonymization to be feasible. For this, we expressed lowents
for the sampling probability, or more intuitively, the ertef over-
lap in the edges of two graphs, so that it yields perfect niagch

Two conditions in our theorem are = w(1/n) andps — 0.
How these parameters relate to real networks is of coursecéatr
and interesting question. Social networks tend to be sparse

of the networR. The scaling ofs is more debatable, as it depends
on the nature of the two networks.@; andG> capture the social
interactions between a set of people using different mettfed.,
email and phone calls), then it would make sense to postalate
constants independent of the size of the network, as the choice of
method (i.e., generating a link) would be a purely local cared
therefore not influenced by the rest of the network. Howavere
cross-domain data should be studied to verify this.

Our result shows that given a specific cost functid), a pair
of correlated graphs can be perfectly matched under cectain
ditions. An interesting question would be the converse: wan
find conditions such that no cost function could give a matbh?
the G (n, p; s) model, it is straightforward to show such a converse
of the formps = o(logn/n), as alluded to before. In this case,
G1 and G2 would have isolated vertices a.a.s., and obviously no
method would be able to determine the correct matching among
these. More precise converses, as well as variations of odem
(e.g., assuming other generator gragfjsare the topic of future
work.

Our work implies the feasibility of de-anonymization of a-ta
get network by using the structural similarity of a known giary
network, and raises privacy concerns about sharing thelesstnp
topological information of users with partners and thiatip ap-
plications. One consequence of our work might be guidelores
how to release or share only sampled versions of networkenby
forcing the sparsity constraint to guarantee anonymitys Would
be promising provided such a thinned-out network would jstd-
vide enough information for the task at hand.

In future, we intend to generalize our approach to a broddssc
of graphs. As discussed above, we conjecture that in sonse sen
random graph as the generatdmay be more difficult than a more
“structured” graph. On the other hand, the i.i.d. samplimrpss
in our model is an idealistic assumption, and the impactlafieg
it should be explored. Finally, and perhaps most imporyanthile
this paper proves thexistenceof the perfect matching using the
proposed error function, the algorithmic complexity of reééng
in such a vast space is still an open problem.
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