Prediction and Privacy for Human Mobility Data

Matthias Grossglauser
EPFL

With Mohamed Kafsi and Patrick Thiran

Allerton, Oct 2014
Mobility mining

- Mobility patterns say a lot about us:
 - Activities, social contacts & communities, work, travel,…
 - People share location info: “check-ins” (foursquare etc.)

- Opportunities:
 - Optimizing services, anticipating needs (aka targeted advertisement)
 - Infrastructure optimization, store placement,…

- Threats:
 - Personal privacy: profiling, revealing locations,…
Mobility: the map as a graph

- **Model:**
 - World = a graph
 - User mobility = sequence of vertices (trajectory)

- **Question:**
 - How undisclosed are undisclosed locations?
Model

- **Assumptions:**
 - Markov chain capturing mobility patterns
 - Check-in = conditioning on an intermediate state
 - Privacy = uncertainty about trajectory T_{sd}: conditional entropy

- **Result:**
 - Formulate as conditional entropy of Markov trajectories given intermediate states
 - Exact results on “number of bits” revealed about trajectory [KGT13]
 - Extension of classical result by [Ekroot & Cover 1993]
Entropy of Markov trajectories

- Measuring uncertainty about the trajectory: Shannon entropy of the trajectory from \(s \) to \(d \):

\[
H_{sd} \overset{\text{def}}{=} H(T_{sd}) = - \sum_{t_{sd} \in T_{sd}} p(t_{sd}) \log p(t_{sd})
\]

- \(T_{sd} \) = set of trajectories starting at \(s \), ending at \(d \), with no intermediate state \(d \)
 - Cardinality is typically infinite

- \(H \): matrix of trajectory entropies
 - General closed-form expression [Ekroot & Cover, 1993] for irreducible MC
How does the predictability of a trajectory evolve when we condition on a sequence of intermediate states \(u = (u_1, u_2, ..., u_l) \)?

Conditional entropy of the trajectory from \(s \) to \(d \) visiting all intermediate states \(u \):

\[
H_{sd|u} = - \sum_{t_{sd} \in \mathcal{T}_{sd}^u} p(t_{sd} | t_{sd} \in \mathcal{T}_{sd}^u) \log p(t_{sd} | t_{sd} \in \mathcal{T}_{sd}^u)
\]

\(\mathcal{T}_{sd}^u \): set of trajectories starting at \(s \), ending at \(d \), with no intermediate state \(d \), and \(u \) as a subsequence.

Again, enumerating all trajectories costly or impossible (infinite)
Computing conditional entropy: step 1

- Show that conditional entropy given subsequence \(u = (u_1, u_2, \ldots, u_l) \) can be decomposed into segments:

\[
H(T_{sd} | T_{sd} \supset su_1 \ldots u_l d) = \sum_{k=0}^{l-1} H_{u_k u_{k+1} | \bar{d}} + H_{u_l d}
\]

- Problem: trajectory entropy \(H_{s' d' | \bar{d}} \) conditioned on not going through state \(d \)

- Computing \(H_{s' d' | \bar{d}} \):
 - Derive new matrix \(P' \), such that unconditional entropy in \(P' \) = conditional entropy in \(P \)
Step 2: transforming P into P'

d' and d are made absorbing

\[H(T_{s'd'} | T_{s'd'} \in T_{s'd'}^d) \]

\[H(T'_{s'd'}) \]

\[
P'_{ij} = \begin{cases}
\frac{\alpha_{jd'd}}{\alpha_{id'd}} \bar{P}_{ij} & \text{if } \alpha_{id'd} > 0 \\
\bar{P}_{ij} & \text{otherwise}
\end{cases}
\]
Step 2: P
Step 2: \overline{P} has d, d' absorbing
Step 2: P': normalized transition probabilities
Step 2: computing $H_{s'd'|\bar{d}}$

- Basic idea: reduce computing conditional entropy → unconditional entropy over a modified MC
- Relationship between original chain and P':
 - $t_{s'd'} \in \mathcal{T}_{s'd'}^d \rightarrow p'(t_{s'd'}) = 0$
 - $t_{s'd'} \notin \mathcal{T}_{s'd'}^d \rightarrow$

 $$p'(t_{s'd'}) = P'(s', x_2)P'(x_2, x_3) ... P'(x_k, d')$$
 $$= \frac{\alpha_{x_2'd'}d}{\alpha_{s'd'}d} P(s', x_2) \frac{\alpha_{x_3'd'}d}{\alpha_{x_2'd'}d} P(x_2, x_3) ... \frac{\alpha_{d'd'}d}{\alpha_{x_k'd'}d} P(x_k, d')$$
 $$= \frac{\alpha_{d'd'}d}{\alpha_{s'd'}d} P(s, x_2)P(x_2, x_3) ... P(x_k, d')$$
 $$= \frac{p(t_{s'd'})}{p(T_{s'd'} \notin \mathcal{T}_{s'd'}^d)} = p(t_{s'd'}|T_{s'd'} \notin \mathcal{T}_{s'd'}^d)$$

Filtering trajectories hitting d first
Step 3: unconditional entropy for general MC

- Relaxing the irreducibility condition of [Ekroot&Cover93]
- Express the entropy as a linear combination of local entropies

\[H_{s'd'} = \sum_{i \neq d'} \left((I - Q_{d'})^{-1} \right)_{s'i} H(P_i) \]

Expected number of visits to state \(i \)

Entropy of next transition out of state \(i \)
Conditional trajectory entropy: not monotonic!

- Counter-example:

\[H_{sd|a} = 0 < H_{sd} \]

\[H_{sd|b} > H_{sd} \]
Conditional trajectory entropy: not additive!

- Counter-example:

\[H_{15|4} \neq H_{14} + H_{45} \]
Computational cost

- Worst-case complexity: $O(ln^3)$
 - l: length of conditioning vector
 - n: number of states
 - Dominated by computation of $(I - Q_d)^{-1}$
 - Linear in length l of conditioning vector \rightarrow efficient to process long trajectories

- Processing individual trajectory:
 - Only row s of $(I - Q_d)^{-1}$ needed \rightarrow rely on efficient methods for sparse matrix inversion

- Processing large batch of trajectories:
 - Computation of $(I - Q_d)^{-1}$ amortized \rightarrow linear in total # of conditioning states (over all trajectories)
Application: trajectory privacy with check-ins

Normalized conditional entropy: $\frac{H_{sd|u}}{H_{sd}}$
Application: trajectory segmentation

- **Human mobility:**
 - Serves to reach a set of “waypoints” = intermediate destinations

- **Waypoints: personal choices**
 - Work; school; shopping; doctor’s appointment; ...

- **Between waypoints: generic behavior**
 - Optimization of travel time & cost; reacting to conditions; incomplete information

- **Question:**
 - Given only a low-order mobility model trained from a whole population, can we infer waypoints for individual users?

- **Intuition:**
 - Adding “out of the way” waypoints enriches the set of plausible trajectories $\Rightarrow H_{sd|u} > H_{sd}$
Example:

- $H_{sd|u/H_{sd}}$ as a function of u, for unbiased random walk
Segmentation of mobility traces

- Geolife project: ~ 200 users, 20k trajectories
Residence time vs relative conditional entropy

- Expected residence time vs $\frac{H_{sd|u}}{H_{sd}} > \alpha$
Conclusion

- Principled way to quantify mobility uncertainty
 - Conditional entropy given start, end, intermediate states
 - With respect to a Markov mobility model
 - Low-order: easy to learn (dense) & compute; representative for population; overfitting control
 - Efficient to process large batches of trajectories

- Privacy:
 - Information loss (or gain!) by revealing set of locations
 - Not monotonic, not additive
 - Inverse problem: trajectory compression

- Segmentation:
 - Idea: trajectory = reaching a sequence of waypoints
 - Expect high $H_{sd|u}$ for waypoints u
 - Can segment without time stamps & spatial coordinates, and relative to generic model
Prediction and Privacy for Human Mobility Data

Thanks!
Questions?